2017-03-06 11:10:25 +00:00
|
|
|
import random
|
2017-03-09 14:44:26 +00:00
|
|
|
import logging
|
2017-03-06 11:10:25 +00:00
|
|
|
from itertools import izip_longest, groupby, chain
|
2017-02-21 13:37:11 +00:00
|
|
|
|
|
|
|
from wa.framework import pluginloader
|
2017-03-06 11:10:25 +00:00
|
|
|
from wa.framework.configuration.core import (MetaConfiguration, RunConfiguration,
|
2017-03-20 16:24:22 +00:00
|
|
|
JobGenerator, Status, settings)
|
2017-03-06 11:10:25 +00:00
|
|
|
from wa.framework.configuration.parsers import ConfigParser
|
|
|
|
from wa.framework.configuration.plugin_cache import PluginCache
|
2017-03-09 14:44:26 +00:00
|
|
|
from wa.framework.exception import NotFoundError
|
2017-03-09 17:39:44 +00:00
|
|
|
from wa.framework.job import Job
|
2017-03-16 17:54:48 +00:00
|
|
|
from wa.framework.run import JobState
|
2017-03-17 16:28:21 +00:00
|
|
|
from wa.utils import log
|
2017-03-09 14:44:26 +00:00
|
|
|
from wa.utils.types import enum
|
2017-02-21 13:37:11 +00:00
|
|
|
|
2017-03-06 11:10:25 +00:00
|
|
|
|
|
|
|
class CombinedConfig(object):
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def from_pod(pod):
|
|
|
|
instance = CombinedConfig()
|
|
|
|
instance.settings = MetaConfiguration.from_pod(pod.get('settings', {}))
|
|
|
|
instance.run_config = RunConfiguration.from_pod(pod.get('run_config', {}))
|
|
|
|
return instance
|
|
|
|
|
|
|
|
def __init__(self, settings=None, run_config=None):
|
|
|
|
self.settings = settings
|
|
|
|
self.run_config = run_config
|
|
|
|
|
|
|
|
def to_pod(self):
|
|
|
|
return {'settings': self.settings.to_pod(),
|
|
|
|
'run_config': self.run_config.to_pod()}
|
|
|
|
|
|
|
|
|
|
|
|
class ConfigManager(object):
|
|
|
|
"""
|
|
|
|
Represents run-time state of WA. Mostly used as a container for loaded
|
|
|
|
configuration and discovered plugins.
|
|
|
|
|
|
|
|
This exists outside of any command or run and is associated with the running
|
|
|
|
instance of wA itself.
|
|
|
|
"""
|
|
|
|
|
|
|
|
@property
|
|
|
|
def enabled_instruments(self):
|
|
|
|
return self.jobs_config.enabled_instruments
|
|
|
|
|
|
|
|
@property
|
|
|
|
def job_specs(self):
|
|
|
|
if not self._jobs_generated:
|
|
|
|
msg = 'Attempting to access job specs before '\
|
|
|
|
'jobs have been generated'
|
|
|
|
raise RuntimeError(msg)
|
|
|
|
return [j.spec for j in self._jobs]
|
|
|
|
|
|
|
|
@property
|
|
|
|
def jobs(self):
|
|
|
|
if not self._jobs_generated:
|
|
|
|
msg = 'Attempting to access jobs before '\
|
|
|
|
'they have been generated'
|
|
|
|
raise RuntimeError(msg)
|
|
|
|
return self._jobs
|
|
|
|
|
|
|
|
def __init__(self, settings=settings):
|
|
|
|
self.settings = settings
|
|
|
|
self.run_config = RunConfiguration()
|
|
|
|
self.plugin_cache = PluginCache()
|
|
|
|
self.jobs_config = JobGenerator(self.plugin_cache)
|
|
|
|
self.loaded_config_sources = []
|
|
|
|
self._config_parser = ConfigParser()
|
|
|
|
self._jobs = []
|
|
|
|
self._jobs_generated = False
|
|
|
|
self.agenda = None
|
|
|
|
|
|
|
|
def load_config_file(self, filepath):
|
|
|
|
self._config_parser.load_from_path(self, filepath)
|
|
|
|
self.loaded_config_sources.append(filepath)
|
|
|
|
|
|
|
|
def load_config(self, values, source, wrap_exceptions=True):
|
|
|
|
self._config_parser.load(self, values, source)
|
|
|
|
self.loaded_config_sources.append(source)
|
|
|
|
|
|
|
|
def get_plugin(self, name=None, kind=None, *args, **kwargs):
|
|
|
|
return self.plugin_cache.get_plugin(name, kind, *args, **kwargs)
|
|
|
|
|
|
|
|
def get_instruments(self, target):
|
|
|
|
instruments = []
|
|
|
|
for name in self.enabled_instruments:
|
2017-03-09 14:44:26 +00:00
|
|
|
try:
|
|
|
|
instruments.append(self.get_plugin(name, kind='instrument',
|
2017-03-20 16:24:22 +00:00
|
|
|
target=target))
|
2017-03-09 14:44:26 +00:00
|
|
|
except NotFoundError:
|
|
|
|
msg = 'Instrument "{}" not found'
|
|
|
|
raise NotFoundError(msg.format(name))
|
2017-03-06 11:10:25 +00:00
|
|
|
return instruments
|
|
|
|
|
2017-03-20 16:24:22 +00:00
|
|
|
def get_processors(self):
|
|
|
|
processors = []
|
|
|
|
for name in self.run_config.result_processors:
|
|
|
|
try:
|
|
|
|
proc = self.plugin_cache.get_plugin(name, kind='result_processor')
|
|
|
|
except NotFoundError:
|
|
|
|
msg = 'Result processor "{}" not found'
|
|
|
|
raise NotFoundError(msg.format(name))
|
|
|
|
processors.append(proc)
|
|
|
|
return processors
|
|
|
|
|
2017-03-06 11:10:25 +00:00
|
|
|
def finalize(self):
|
|
|
|
if not self.agenda:
|
|
|
|
msg = 'Attempting to finalize config before agenda has been set'
|
|
|
|
raise RuntimeError(msg)
|
|
|
|
self.run_config.merge_device_config(self.plugin_cache)
|
|
|
|
return CombinedConfig(self.settings, self.run_config)
|
|
|
|
|
|
|
|
def generate_jobs(self, context):
|
|
|
|
job_specs = self.jobs_config.generate_job_specs(context.tm)
|
|
|
|
exec_order = self.run_config.execution_order
|
2017-03-17 16:28:21 +00:00
|
|
|
log.indent()
|
2017-03-06 11:10:25 +00:00
|
|
|
for spec, i in permute_iterations(job_specs, exec_order):
|
|
|
|
job = Job(spec, i, context)
|
|
|
|
job.load(context.tm.target)
|
|
|
|
self._jobs.append(job)
|
2017-03-16 17:54:48 +00:00
|
|
|
context.run_state.add_job(job)
|
2017-03-17 16:28:21 +00:00
|
|
|
log.dedent()
|
2017-03-06 11:10:25 +00:00
|
|
|
self._jobs_generated = True
|
|
|
|
|
|
|
|
|
|
|
|
def permute_by_job(specs):
|
|
|
|
"""
|
|
|
|
This is that "classic" implementation that executes all iterations of a
|
|
|
|
workload spec before proceeding onto the next spec.
|
|
|
|
|
|
|
|
"""
|
|
|
|
for spec in specs:
|
|
|
|
for i in range(1, spec.iterations + 1):
|
|
|
|
yield (spec, i)
|
|
|
|
|
|
|
|
|
|
|
|
def permute_by_iteration(specs):
|
|
|
|
"""
|
|
|
|
Runs the first iteration for all benchmarks first, before proceeding to the
|
|
|
|
next iteration, i.e. A1, B1, C1, A2, B2, C2... instead of A1, A1, B1, B2,
|
|
|
|
C1, C2...
|
|
|
|
|
|
|
|
If multiple sections where specified in the agenda, this will run all
|
|
|
|
sections for the first global spec first, followed by all sections for the
|
|
|
|
second spec, etc.
|
|
|
|
|
|
|
|
e.g. given sections X and Y, and global specs A and B, with 2 iterations,
|
|
|
|
this will run
|
|
|
|
|
|
|
|
X.A1, Y.A1, X.B1, Y.B1, X.A2, Y.A2, X.B2, Y.B2
|
|
|
|
|
|
|
|
"""
|
|
|
|
groups = [list(g) for k, g in groupby(specs, lambda s: s.workload_id)]
|
|
|
|
|
|
|
|
all_tuples = []
|
|
|
|
for spec in chain(*groups):
|
|
|
|
all_tuples.append([(spec, i + 1)
|
|
|
|
for i in xrange(spec.iterations)])
|
|
|
|
for t in chain(*map(list, izip_longest(*all_tuples))):
|
|
|
|
if t is not None:
|
|
|
|
yield t
|
|
|
|
|
|
|
|
|
|
|
|
def permute_by_section(specs):
|
|
|
|
"""
|
|
|
|
Runs the first iteration for all benchmarks first, before proceeding to the
|
|
|
|
next iteration, i.e. A1, B1, C1, A2, B2, C2... instead of A1, A1, B1, B2,
|
|
|
|
C1, C2...
|
|
|
|
|
|
|
|
If multiple sections where specified in the agenda, this will run all specs
|
|
|
|
for the first section followed by all specs for the seciod section, etc.
|
|
|
|
|
|
|
|
e.g. given sections X and Y, and global specs A and B, with 2 iterations,
|
|
|
|
this will run
|
|
|
|
|
|
|
|
X.A1, X.B1, Y.A1, Y.B1, X.A2, X.B2, Y.A2, Y.B2
|
|
|
|
|
|
|
|
"""
|
|
|
|
groups = [list(g) for k, g in groupby(specs, lambda s: s.section_id)]
|
|
|
|
|
|
|
|
all_tuples = []
|
|
|
|
for spec in chain(*groups):
|
|
|
|
all_tuples.append([(spec, i + 1)
|
|
|
|
for i in xrange(spec.iterations)])
|
|
|
|
for t in chain(*map(list, izip_longest(*all_tuples))):
|
|
|
|
if t is not None:
|
|
|
|
yield t
|
|
|
|
|
|
|
|
|
|
|
|
def permute_randomly(specs):
|
|
|
|
"""
|
|
|
|
This will generate a random permutation of specs/iteration tuples.
|
|
|
|
|
|
|
|
"""
|
|
|
|
result = []
|
|
|
|
for spec in specs:
|
|
|
|
for i in xrange(1, spec.iterations + 1):
|
|
|
|
result.append((spec, i))
|
|
|
|
random.shuffle(result)
|
|
|
|
for t in result:
|
|
|
|
yield t
|
|
|
|
|
|
|
|
|
|
|
|
permute_map = {
|
|
|
|
'by_iteration': permute_by_iteration,
|
|
|
|
'by_job': permute_by_job,
|
|
|
|
'by_section': permute_by_section,
|
|
|
|
'random': permute_randomly,
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
def permute_iterations(specs, exec_order):
|
|
|
|
if exec_order not in permute_map:
|
|
|
|
msg = 'Unknown execution order "{}"; must be in: {}'
|
|
|
|
raise ValueError(msg.format(exec_order, permute_map.keys()))
|
|
|
|
return permute_map[exec_order](specs)
|