1
0
mirror of https://github.com/ARM-software/workload-automation.git synced 2025-01-19 20:34:30 +00:00

346 lines
10 KiB
C
Raw Normal View History

/* Copyright 2014-2015 ARM Limited
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
* readenergy.c
*
* Reads APB energy registers in Juno and outputs the measurements (converted to appropriate units).
*
*/
#include <errno.h>
#include <fcntl.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <signal.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <time.h>
#include <unistd.h>
// The following values obtained from Juno TRM 2014/03/04 section 4.5
// Location of APB registers in memory
#define APB_BASE_MEMORY 0x1C010000
// APB energy counters start at offset 0xD0 from the base APB address.
#define BASE_INDEX 0xD0 / 4
// the one-past last APB counter
#define APB_SIZE 0x120
// Masks specifying the bits that contain the actual counter values
#define CMASK 0xFFF
#define VMASK 0xFFF
#define PMASK 0xFFFFFF
// Sclaing factor (divisor) or getting measured values from counters
#define SYS_ADC_CH0_PM1_SYS_SCALE 761
#define SYS_ADC_CH1_PM2_A57_SCALE 381
#define SYS_ADC_CH2_PM3_A53_SCALE 761
#define SYS_ADC_CH3_PM4_GPU_SCALE 381
#define SYS_ADC_CH4_VSYS_SCALE 1622
#define SYS_ADC_CH5_VA57_SCALE 1622
#define SYS_ADC_CH6_VA53_SCALE 1622
#define SYS_ADC_CH7_VGPU_SCALE 1622
#define SYS_POW_CH04_SYS_SCALE (SYS_ADC_CH0_PM1_SYS_SCALE * SYS_ADC_CH4_VSYS_SCALE)
#define SYS_POW_CH15_A57_SCALE (SYS_ADC_CH1_PM2_A57_SCALE * SYS_ADC_CH5_VA57_SCALE)
#define SYS_POW_CH26_A53_SCALE (SYS_ADC_CH2_PM3_A53_SCALE * SYS_ADC_CH6_VA53_SCALE)
#define SYS_POW_CH37_GPU_SCALE (SYS_ADC_CH3_PM4_GPU_SCALE * SYS_ADC_CH7_VGPU_SCALE)
#define SYS_ENM_CH0_SYS_SCALE 12348030000
#define SYS_ENM_CH1_A57_SCALE 6174020000
#define SYS_ENM_CH0_A53_SCALE 12348030000
#define SYS_ENM_CH0_GPU_SCALE 6174020000
// Original values prior to re-callibrations.
/*#define SYS_ADC_CH0_PM1_SYS_SCALE 819.2*/
/*#define SYS_ADC_CH1_PM2_A57_SCALE 409.6*/
/*#define SYS_ADC_CH2_PM3_A53_SCALE 819.2*/
/*#define SYS_ADC_CH3_PM4_GPU_SCALE 409.6*/
/*#define SYS_ADC_CH4_VSYS_SCALE 1638.4*/
/*#define SYS_ADC_CH5_VA57_SCALE 1638.4*/
/*#define SYS_ADC_CH6_VA53_SCALE 1638.4*/
/*#define SYS_ADC_CH7_VGPU_SCALE 1638.4*/
/*#define SYS_POW_CH04_SYS_SCALE (SYS_ADC_CH0_PM1_SYS_SCALE * SYS_ADC_CH4_VSYS_SCALE)*/
/*#define SYS_POW_CH15_A57_SCALE (SYS_ADC_CH1_PM2_A57_SCALE * SYS_ADC_CH5_VA57_SCALE)*/
/*#define SYS_POW_CH26_A53_SCALE (SYS_ADC_CH2_PM3_A53_SCALE * SYS_ADC_CH6_VA53_SCALE)*/
/*#define SYS_POW_CH37_GPU_SCALE (SYS_ADC_CH3_PM4_GPU_SCALE * SYS_ADC_CH7_VGPU_SCALE)*/
/*#define SYS_ENM_CH0_SYS_SCALE 13421772800.0*/
/*#define SYS_ENM_CH1_A57_SCALE 6710886400.0*/
/*#define SYS_ENM_CH0_A53_SCALE 13421772800.0*/
/*#define SYS_ENM_CH0_GPU_SCALE 6710886400.0*/
// Ignore individual errors but if see too many, abort.
#define ERROR_THRESHOLD 10
// Default counter poll period (in milliseconds).
#define DEFAULT_PERIOD 100
// A single reading from the energy meter. The values are the proper readings converted
// to appropriate units (e.g. Watts for power); they are *not* raw counter values.
struct reading
{
double sys_adc_ch0_pm1_sys;
double sys_adc_ch1_pm2_a57;
double sys_adc_ch2_pm3_a53;
double sys_adc_ch3_pm4_gpu;
double sys_adc_ch4_vsys;
double sys_adc_ch5_va57;
double sys_adc_ch6_va53;
double sys_adc_ch7_vgpu;
double sys_pow_ch04_sys;
double sys_pow_ch15_a57;
double sys_pow_ch26_a53;
double sys_pow_ch37_gpu;
double sys_enm_ch0_sys;
double sys_enm_ch1_a57;
double sys_enm_ch0_a53;
double sys_enm_ch0_gpu;
};
inline uint64_t join_64bit_register(uint32_t *buffer, int index)
{
uint64_t result = 0;
result |= buffer[index];
result |= (uint64_t)(buffer[index+1]) << 32;
return result;
}
int nsleep(const struct timespec *req, struct timespec *rem)
{
struct timespec temp_rem;
if (nanosleep(req, rem) == -1)
{
if (errno == EINTR)
{
nsleep(rem, &temp_rem);
}
else
{
return errno;
}
}
else
{
return 0;
}
}
void print_help()
{
fprintf(stderr, "Usage: readenergy [-t PERIOD] -o OUTFILE\n\n"
"Read Juno energy counters every PERIOD milliseconds, writing them\n"
"to OUTFILE in CSV format until SIGTERM is received.\n\n"
"Parameters:\n"
" PERIOD is the counter poll period in milliseconds.\n"
" (Defaults to 100 milliseconds.)\n"
" OUTFILE is the output file path\n");
}
// debugging only...
inline void dprint(char *msg)
{
fprintf(stderr, "%s\n", msg);
sync();
}
// -------------------------------------- config ----------------------------------------------------
struct config
{
struct timespec period;
char *output_file;
};
void config_init_period_from_millis(struct config *this, long millis)
{
this->period.tv_sec = (time_t)(millis / 1000);
this->period.tv_nsec = (millis % 1000) * 1000000;
}
void config_init(struct config *this, int argc, char *argv[])
{
this->output_file = NULL;
config_init_period_from_millis(this, DEFAULT_PERIOD);
int opt;
while ((opt = getopt(argc, argv, "ht:o:")) != -1)
{
switch(opt)
{
case 't':
config_init_period_from_millis(this, atol(optarg));
break;
case 'o':
this->output_file = optarg;
break;
case 'h':
print_help();
exit(EXIT_SUCCESS);
break;
default:
fprintf(stderr, "ERROR: Unexpected option %s\n\n", opt);
print_help();
exit(EXIT_FAILURE);
}
}
if (this->output_file == NULL)
{
fprintf(stderr, "ERROR: Mandatory -o option not specified.\n\n");
print_help();
exit(EXIT_FAILURE);
}
}
// -------------------------------------- /config ---------------------------------------------------
// -------------------------------------- emeter ----------------------------------------------------
struct emeter
{
int fd;
FILE *out;
void *mmap_base;
};
void emeter_init(struct emeter *this, char *outfile)
{
this->out = fopen(outfile, "w");
if (this->out == NULL)
{
fprintf(stderr, "ERROR: Could not open output file %s; got %s\n", outfile, strerror(errno));
exit(EXIT_FAILURE);
}
this->fd = open("/dev/mem", O_RDONLY);
if(this->fd < 0)
{
fprintf(stderr, "ERROR: Can't open /dev/mem; got %s\n", strerror(errno));
fclose(this->out);
exit(EXIT_FAILURE);
}
this->mmap_base = mmap(NULL, APB_SIZE, PROT_READ, MAP_SHARED, this->fd, APB_BASE_MEMORY);
if (this->mmap_base == MAP_FAILED)
{
fprintf(stderr, "ERROR: mmap failed; got %s\n", strerror(errno));
close(this->fd);
fclose(this->out);
exit(EXIT_FAILURE);
}
fprintf(this->out, "sys_curr,a57_curr,a53_curr,gpu_curr,"
"sys_volt,a57_volt,a53_volt,gpu_volt,"
"sys_pow,a57_pow,a53_pow,gpu_pow,"
"sys_cenr,a57_cenr,a53_cenr,gpu_cenr\n");
}
void emeter_read_measurements(struct emeter *this, struct reading *reading)
{
uint32_t *buffer = (uint32_t *)this->mmap_base;
reading->sys_adc_ch0_pm1_sys = (double)(CMASK & buffer[BASE_INDEX+0]) / SYS_ADC_CH0_PM1_SYS_SCALE;
reading->sys_adc_ch1_pm2_a57 = (double)(CMASK & buffer[BASE_INDEX+1]) / SYS_ADC_CH1_PM2_A57_SCALE;
reading->sys_adc_ch2_pm3_a53 = (double)(CMASK & buffer[BASE_INDEX+2]) / SYS_ADC_CH2_PM3_A53_SCALE;
reading->sys_adc_ch3_pm4_gpu = (double)(CMASK & buffer[BASE_INDEX+3]) / SYS_ADC_CH3_PM4_GPU_SCALE;
reading->sys_adc_ch4_vsys = (double)(VMASK & buffer[BASE_INDEX+4]) / SYS_ADC_CH4_VSYS_SCALE;
reading->sys_adc_ch5_va57 = (double)(VMASK & buffer[BASE_INDEX+5]) / SYS_ADC_CH5_VA57_SCALE;
reading->sys_adc_ch6_va53 = (double)(VMASK & buffer[BASE_INDEX+6]) / SYS_ADC_CH6_VA53_SCALE;
reading->sys_adc_ch7_vgpu = (double)(VMASK & buffer[BASE_INDEX+7]) / SYS_ADC_CH7_VGPU_SCALE;
reading->sys_pow_ch04_sys = (double)(PMASK & buffer[BASE_INDEX+8]) / SYS_POW_CH04_SYS_SCALE;
reading->sys_pow_ch15_a57 = (double)(PMASK & buffer[BASE_INDEX+9]) / SYS_POW_CH15_A57_SCALE;
reading->sys_pow_ch26_a53 = (double)(PMASK & buffer[BASE_INDEX+10]) / SYS_POW_CH26_A53_SCALE;
reading->sys_pow_ch37_gpu = (double)(PMASK & buffer[BASE_INDEX+11]) / SYS_POW_CH37_GPU_SCALE;
reading->sys_enm_ch0_sys = (double)join_64bit_register(buffer, BASE_INDEX+12) / SYS_ENM_CH0_SYS_SCALE;
reading->sys_enm_ch1_a57 = (double)join_64bit_register(buffer, BASE_INDEX+14) / SYS_ENM_CH1_A57_SCALE;
reading->sys_enm_ch0_a53 = (double)join_64bit_register(buffer, BASE_INDEX+16) / SYS_ENM_CH0_A53_SCALE;
reading->sys_enm_ch0_gpu = (double)join_64bit_register(buffer, BASE_INDEX+18) / SYS_ENM_CH0_GPU_SCALE;
}
void emeter_take_reading(struct emeter *this)
{
static struct reading reading;
int error_count = 0;
emeter_read_measurements(this, &reading);
int ret = fprintf(this->out, "%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f\n",
reading.sys_adc_ch0_pm1_sys,
reading.sys_adc_ch1_pm2_a57,
reading.sys_adc_ch2_pm3_a53,
reading.sys_adc_ch3_pm4_gpu,
reading.sys_adc_ch4_vsys,
reading.sys_adc_ch5_va57,
reading.sys_adc_ch6_va53,
reading.sys_adc_ch7_vgpu,
reading.sys_pow_ch04_sys,
reading.sys_pow_ch15_a57,
reading.sys_pow_ch26_a53,
reading.sys_pow_ch37_gpu,
reading.sys_enm_ch0_sys,
reading.sys_enm_ch1_a57,
reading.sys_enm_ch0_a53,
reading.sys_enm_ch0_gpu);
if (ret < 0)
{
fprintf(stderr, "ERROR: while writing a meter reading: %s\n", strerror(errno));
if (++error_count > ERROR_THRESHOLD)
exit(EXIT_FAILURE);
}
}
void emeter_finalize(struct emeter *this)
{
if (munmap(this->mmap_base, APB_SIZE) == -1)
{
// Report the error but don't bother doing anything else, as we're not gonna do
// anything with emeter after this point anyway.
fprintf(stderr, "ERROR: munmap failed; got %s\n", strerror(errno));
}
close(this->fd);
fclose(this->out);
}
// -------------------------------------- /emeter ----------------------------------------------------
int done = 0;
void term_handler(int signum)
{
done = 1;
}
int main(int argc, char *argv[])
{
struct sigaction action;
memset(&action, 0, sizeof(struct sigaction));
action.sa_handler = term_handler;
sigaction(SIGTERM, &action, NULL);
struct config config;
struct emeter emeter;
config_init(&config, argc, argv);
emeter_init(&emeter, config.output_file);
struct timespec remaining;
while (!done)
{
emeter_take_reading(&emeter);
nsleep(&config.period, &remaining);
}
emeter_finalize(&emeter);
return EXIT_SUCCESS;
}