2015-03-10 13:09:31 +00:00
|
|
|
# Copyright 2013-2015 ARM Limited
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
#
|
|
|
|
|
|
|
|
|
|
|
|
# pylint: disable=E1101
|
|
|
|
import os
|
|
|
|
import logging
|
|
|
|
import inspect
|
|
|
|
from copy import copy
|
|
|
|
from collections import OrderedDict
|
|
|
|
|
|
|
|
from wlauto.core.bootstrap import settings
|
|
|
|
from wlauto.exceptions import ValidationError, ConfigError
|
|
|
|
from wlauto.utils.misc import isiterable, ensure_directory_exists as _d, get_article
|
2015-04-09 11:52:14 +01:00
|
|
|
from wlauto.utils.types import identifier, integer, boolean
|
2015-03-10 13:09:31 +00:00
|
|
|
|
|
|
|
|
|
|
|
class AttributeCollection(object):
|
|
|
|
"""
|
|
|
|
Accumulator for extension attribute objects (such as Parameters or Artifacts). This will
|
|
|
|
replace any class member list accumulating such attributes through the magic of
|
|
|
|
metaprogramming\ [*]_.
|
|
|
|
|
|
|
|
.. [*] which is totally safe and not going backfire in any way...
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
@property
|
|
|
|
def values(self):
|
|
|
|
return self._attrs.values()
|
|
|
|
|
|
|
|
def __init__(self, attrcls):
|
|
|
|
self._attrcls = attrcls
|
|
|
|
self._attrs = OrderedDict()
|
|
|
|
|
|
|
|
def add(self, p):
|
|
|
|
p = self._to_attrcls(p)
|
|
|
|
if p.name in self._attrs:
|
|
|
|
if p.override:
|
|
|
|
newp = copy(self._attrs[p.name])
|
|
|
|
for a, v in p.__dict__.iteritems():
|
|
|
|
if v is not None:
|
|
|
|
setattr(newp, a, v)
|
|
|
|
self._attrs[p.name] = newp
|
|
|
|
else:
|
|
|
|
# Duplicate attribute condition is check elsewhere.
|
|
|
|
pass
|
|
|
|
else:
|
|
|
|
self._attrs[p.name] = p
|
|
|
|
|
|
|
|
append = add
|
|
|
|
|
|
|
|
def __str__(self):
|
|
|
|
return 'AC({})'.format(map(str, self._attrs.values()))
|
|
|
|
|
|
|
|
__repr__ = __str__
|
|
|
|
|
|
|
|
def _to_attrcls(self, p):
|
|
|
|
if isinstance(p, basestring):
|
|
|
|
p = self._attrcls(p)
|
|
|
|
elif isinstance(p, tuple) or isinstance(p, list):
|
|
|
|
p = self._attrcls(*p)
|
|
|
|
elif isinstance(p, dict):
|
|
|
|
p = self._attrcls(**p)
|
|
|
|
elif not isinstance(p, self._attrcls):
|
|
|
|
raise ValueError('Invalid parameter value: {}'.format(p))
|
|
|
|
if (p.name in self._attrs and not p.override and
|
|
|
|
p.name != 'modules'): # TODO: HACK due to "diamond dependecy" in workloads...
|
|
|
|
raise ValueError('Attribute {} has already been defined.'.format(p.name))
|
|
|
|
return p
|
|
|
|
|
|
|
|
def __iadd__(self, other):
|
|
|
|
for p in other:
|
|
|
|
self.add(p)
|
|
|
|
return self
|
|
|
|
|
|
|
|
def __iter__(self):
|
|
|
|
return iter(self.values)
|
|
|
|
|
|
|
|
def __contains__(self, p):
|
|
|
|
return p in self._attrs
|
|
|
|
|
|
|
|
def __getitem__(self, i):
|
|
|
|
return self._attrs[i]
|
|
|
|
|
|
|
|
def __len__(self):
|
|
|
|
return len(self._attrs)
|
|
|
|
|
|
|
|
|
|
|
|
class AliasCollection(AttributeCollection):
|
|
|
|
|
|
|
|
def __init__(self):
|
|
|
|
super(AliasCollection, self).__init__(Alias)
|
|
|
|
|
|
|
|
def _to_attrcls(self, p):
|
|
|
|
if isinstance(p, tuple) or isinstance(p, list):
|
|
|
|
# must be in the form (name, {param: value, ...})
|
|
|
|
p = self._attrcls(p[1], **p[1])
|
|
|
|
elif not isinstance(p, self._attrcls):
|
|
|
|
raise ValueError('Invalid parameter value: {}'.format(p))
|
|
|
|
if p.name in self._attrs:
|
|
|
|
raise ValueError('Attribute {} has already been defined.'.format(p.name))
|
|
|
|
return p
|
|
|
|
|
|
|
|
|
|
|
|
class ListCollection(list):
|
|
|
|
|
|
|
|
def __init__(self, attrcls): # pylint: disable=unused-argument
|
|
|
|
super(ListCollection, self).__init__()
|
|
|
|
|
|
|
|
|
|
|
|
class Param(object):
|
|
|
|
"""
|
|
|
|
This is a generic parameter for an extension. Extensions instantiate this to declare which parameters
|
|
|
|
are supported.
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
2015-04-09 11:52:14 +01:00
|
|
|
# Mapping for kind conversion; see docs for convert_types below
|
|
|
|
kind_map = {
|
|
|
|
int: integer,
|
|
|
|
bool: boolean,
|
|
|
|
}
|
|
|
|
|
2015-03-10 13:09:31 +00:00
|
|
|
def __init__(self, name, kind=None, mandatory=None, default=None, override=False,
|
2015-04-09 11:52:14 +01:00
|
|
|
allowed_values=None, description=None, constraint=None, global_alias=None, convert_types=True):
|
2015-03-10 13:09:31 +00:00
|
|
|
"""
|
|
|
|
Create a new Parameter object.
|
|
|
|
|
|
|
|
:param name: The name of the parameter. This will become an instance member of the
|
|
|
|
extension object to which the parameter is applied, so it must be a valid
|
|
|
|
python identifier. This is the only mandatory parameter.
|
|
|
|
:param kind: The type of parameter this is. This must be a callable that takes an arbitrary
|
|
|
|
object and converts it to the expected type, or raised ``ValueError`` if such
|
|
|
|
conversion is not possible. Most Python standard types -- ``str``, ``int``, ``bool``, etc. --
|
2015-04-13 12:11:13 +01:00
|
|
|
can be used here. This defaults to ``str`` if not specified.
|
2015-03-10 13:09:31 +00:00
|
|
|
:param mandatory: If set to ``True``, then a non-``None`` value for this parameter *must* be
|
|
|
|
provided on extension object construction, otherwise ``ConfigError`` will be
|
|
|
|
raised.
|
|
|
|
:param default: The default value for this parameter. If no value is specified on extension
|
|
|
|
construction, this value will be used instead. (Note: if this is specified and
|
|
|
|
is not ``None``, then ``mandatory`` parameter will be ignored).
|
|
|
|
:param override: A ``bool`` that specifies whether a parameter of the same name further up the
|
|
|
|
hierarchy should be overridden. If this is ``False`` (the default), an exception
|
|
|
|
will be raised by the ``AttributeCollection`` instead.
|
|
|
|
:param allowed_values: This should be the complete list of allowed values for this parameter.
|
|
|
|
Note: ``None`` value will always be allowed, even if it is not in this list.
|
|
|
|
If you want to disallow ``None``, set ``mandatory`` to ``True``.
|
|
|
|
:param constraint: If specified, this must be a callable that takes the parameter value
|
|
|
|
as an argument and return a boolean indicating whether the constraint
|
|
|
|
has been satisfied. Alternatively, can be a two-tuple with said callable as
|
|
|
|
the first element and a string describing the constraint as the second.
|
|
|
|
:param global_alias: This is an alternative alias for this parameter, unlike the name, this
|
|
|
|
alias will not be namespaced under the owning extension's name (hence the
|
|
|
|
global part). This is introduced primarily for backward compatibility -- so
|
|
|
|
that old extension settings names still work. This should not be used for
|
|
|
|
new parameters.
|
|
|
|
|
2015-04-09 11:52:14 +01:00
|
|
|
:param convert_types: If ``True`` (the default), will automatically convert ``kind`` values from
|
|
|
|
native Python types to WA equivalents. This allows more ituitive interprestation
|
|
|
|
of parameter values, e.g. the string ``"false"`` being interpreted as ``False``
|
|
|
|
when specifed as the value for a boolean Parameter.
|
|
|
|
|
2015-03-10 13:09:31 +00:00
|
|
|
"""
|
|
|
|
self.name = identifier(name)
|
|
|
|
if kind is not None and not callable(kind):
|
|
|
|
raise ValueError('Kind must be callable.')
|
2015-04-09 11:52:14 +01:00
|
|
|
if convert_types and kind in self.kind_map:
|
|
|
|
kind = self.kind_map[kind]
|
2015-03-10 13:09:31 +00:00
|
|
|
self.kind = kind
|
|
|
|
self.mandatory = mandatory
|
|
|
|
self.default = default
|
|
|
|
self.override = override
|
|
|
|
self.allowed_values = allowed_values
|
|
|
|
self.description = description
|
|
|
|
if self.kind is None and not self.override:
|
|
|
|
self.kind = str
|
|
|
|
if constraint is not None and not callable(constraint) and not isinstance(constraint, tuple):
|
|
|
|
raise ValueError('Constraint must be callable or a (callable, str) tuple.')
|
|
|
|
self.constraint = constraint
|
|
|
|
self.global_alias = global_alias
|
|
|
|
|
|
|
|
def set_value(self, obj, value=None):
|
|
|
|
if value is None:
|
|
|
|
if self.default is not None:
|
|
|
|
value = self.default
|
|
|
|
elif self.mandatory:
|
|
|
|
msg = 'No values specified for mandatory parameter {} in {}'
|
|
|
|
raise ConfigError(msg.format(self.name, obj.name))
|
|
|
|
else:
|
|
|
|
try:
|
|
|
|
value = self.kind(value)
|
|
|
|
except (ValueError, TypeError):
|
|
|
|
typename = self.get_type_name()
|
|
|
|
msg = 'Bad value "{}" for {}; must be {} {}'
|
|
|
|
article = get_article(typename)
|
|
|
|
raise ConfigError(msg.format(value, self.name, article, typename))
|
|
|
|
current_value = getattr(obj, self.name, None)
|
|
|
|
if current_value is None:
|
|
|
|
setattr(obj, self.name, value)
|
|
|
|
elif not isiterable(current_value):
|
|
|
|
setattr(obj, self.name, value)
|
|
|
|
else:
|
|
|
|
new_value = current_value + [value]
|
|
|
|
setattr(obj, self.name, new_value)
|
|
|
|
|
|
|
|
def validate(self, obj):
|
|
|
|
value = getattr(obj, self.name, None)
|
|
|
|
if value is not None:
|
|
|
|
if self.allowed_values:
|
|
|
|
self._validate_allowed_values(obj, value)
|
|
|
|
if self.constraint:
|
|
|
|
self._validate_constraint(obj, value)
|
|
|
|
else:
|
|
|
|
if self.mandatory:
|
|
|
|
msg = 'No value specified for mandatory parameter {} in {}.'
|
|
|
|
raise ConfigError(msg.format(self.name, obj.name))
|
|
|
|
|
|
|
|
def get_type_name(self):
|
|
|
|
typename = str(self.kind)
|
|
|
|
if '\'' in typename:
|
|
|
|
typename = typename.split('\'')[1]
|
|
|
|
elif typename.startswith('<function'):
|
|
|
|
typename = typename.split()[1]
|
|
|
|
return typename
|
|
|
|
|
|
|
|
def _validate_allowed_values(self, obj, value):
|
|
|
|
if 'list' in str(self.kind):
|
|
|
|
for v in value:
|
|
|
|
if v not in self.allowed_values:
|
|
|
|
msg = 'Invalid value {} for {} in {}; must be in {}'
|
|
|
|
raise ConfigError(msg.format(v, self.name, obj.name, self.allowed_values))
|
|
|
|
else:
|
|
|
|
if value not in self.allowed_values:
|
|
|
|
msg = 'Invalid value {} for {} in {}; must be in {}'
|
|
|
|
raise ConfigError(msg.format(value, self.name, obj.name, self.allowed_values))
|
|
|
|
|
|
|
|
def _validate_constraint(self, obj, value):
|
|
|
|
msg_vals = {'value': value, 'param': self.name, 'extension': obj.name}
|
|
|
|
if isinstance(self.constraint, tuple) and len(self.constraint) == 2:
|
|
|
|
constraint, msg = self.constraint # pylint: disable=unpacking-non-sequence
|
|
|
|
elif callable(self.constraint):
|
|
|
|
constraint = self.constraint
|
|
|
|
msg = '"{value}" failed constraint validation for {param} in {extension}.'
|
|
|
|
else:
|
|
|
|
raise ValueError('Invalid constraint for {}: must be callable or a 2-tuple'.format(self.name))
|
|
|
|
if not constraint(value):
|
|
|
|
raise ConfigError(value, msg.format(**msg_vals))
|
|
|
|
|
|
|
|
def __repr__(self):
|
|
|
|
d = copy(self.__dict__)
|
|
|
|
del d['description']
|
|
|
|
return 'Param({})'.format(d)
|
|
|
|
|
|
|
|
__str__ = __repr__
|
|
|
|
|
|
|
|
|
|
|
|
Parameter = Param
|
|
|
|
|
|
|
|
|
|
|
|
class Artifact(object):
|
|
|
|
"""
|
|
|
|
This is an artifact generated during execution/post-processing of a workload.
|
|
|
|
Unlike metrics, this represents an actual artifact, such as a file, generated.
|
|
|
|
This may be "result", such as trace, or it could be "meta data" such as logs.
|
|
|
|
These are distinguished using the ``kind`` attribute, which also helps WA decide
|
|
|
|
how it should be handled. Currently supported kinds are:
|
|
|
|
|
|
|
|
:log: A log file. Not part of "results" as such but contains information about the
|
|
|
|
run/workload execution that be useful for diagnostics/meta analysis.
|
|
|
|
:meta: A file containing metadata. This is not part of "results", but contains
|
|
|
|
information that may be necessary to reproduce the results (contrast with
|
|
|
|
``log`` artifacts which are *not* necessary).
|
|
|
|
:data: This file contains new data, not available otherwise and should be considered
|
|
|
|
part of the "results" generated by WA. Most traces would fall into this category.
|
|
|
|
:export: Exported version of results or some other artifact. This signifies that
|
|
|
|
this artifact does not contain any new data that is not available
|
|
|
|
elsewhere and that it may be safely discarded without losing information.
|
|
|
|
:raw: Signifies that this is a raw dump/log that is normally processed to extract
|
|
|
|
useful information and is then discarded. In a sense, it is the opposite of
|
|
|
|
``export``, but in general may also be discarded.
|
|
|
|
|
|
|
|
.. note:: whether a file is marked as ``log``/``data`` or ``raw`` depends on
|
|
|
|
how important it is to preserve this file, e.g. when archiving, vs
|
|
|
|
how much space it takes up. Unlike ``export`` artifacts which are
|
|
|
|
(almost) always ignored by other exporters as that would never result
|
|
|
|
in data loss, ``raw`` files *may* be processed by exporters if they
|
|
|
|
decided that the risk of losing potentially (though unlikely) useful
|
|
|
|
data is greater than the time/space cost of handling the artifact (e.g.
|
|
|
|
a database uploader may choose to ignore ``raw`` artifacts, where as a
|
|
|
|
network filer archiver may choose to archive them).
|
|
|
|
|
|
|
|
.. note: The kind parameter is intended to represent the logical function of a particular
|
|
|
|
artifact, not it's intended means of processing -- this is left entirely up to the
|
|
|
|
result processors.
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
RUN = 'run'
|
|
|
|
ITERATION = 'iteration'
|
|
|
|
|
|
|
|
valid_kinds = ['log', 'meta', 'data', 'export', 'raw']
|
|
|
|
|
|
|
|
def __init__(self, name, path, kind, level=RUN, mandatory=False, description=None):
|
|
|
|
""""
|
|
|
|
:param name: Name that uniquely identifies this artifact.
|
|
|
|
:param path: The *relative* path of the artifact. Depending on the ``level``
|
|
|
|
must be either relative to the run or iteration output directory.
|
|
|
|
Note: this path *must* be delimited using ``/`` irrespective of the
|
|
|
|
operating system.
|
|
|
|
:param kind: The type of the artifact this is (e.g. log file, result, etc.) this
|
|
|
|
will be used a hit to result processors. This must be one of ``'log'``,
|
|
|
|
``'meta'``, ``'data'``, ``'export'``, ``'raw'``.
|
|
|
|
:param level: The level at which the artifact will be generated. Must be either
|
|
|
|
``'iteration'`` or ``'run'``.
|
|
|
|
:param mandatory: Boolean value indicating whether this artifact must be present
|
|
|
|
at the end of result processing for its level.
|
|
|
|
:param description: A free-form description of what this artifact is.
|
|
|
|
|
|
|
|
"""
|
|
|
|
if kind not in self.valid_kinds:
|
|
|
|
raise ValueError('Invalid Artifact kind: {}; must be in {}'.format(kind, self.valid_kinds))
|
|
|
|
self.name = name
|
|
|
|
self.path = path.replace('/', os.sep) if path is not None else path
|
|
|
|
self.kind = kind
|
|
|
|
self.level = level
|
|
|
|
self.mandatory = mandatory
|
|
|
|
self.description = description
|
|
|
|
|
|
|
|
def exists(self, context):
|
|
|
|
"""Returns ``True`` if artifact exists within the specified context, and
|
|
|
|
``False`` otherwise."""
|
|
|
|
fullpath = os.path.join(context.output_directory, self.path)
|
|
|
|
return os.path.exists(fullpath)
|
|
|
|
|
|
|
|
def to_dict(self):
|
|
|
|
return copy(self.__dict__)
|
|
|
|
|
|
|
|
|
|
|
|
class Alias(object):
|
|
|
|
"""
|
|
|
|
This represents a configuration alias for an extension, mapping an alternative name to
|
|
|
|
a set of parameter values, effectively providing an alternative set of default values.
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, name, **kwargs):
|
|
|
|
self.name = name
|
|
|
|
self.params = kwargs
|
|
|
|
self.extension_name = None # gets set by the MetaClass
|
|
|
|
|
|
|
|
def validate(self, ext):
|
|
|
|
ext_params = set(p.name for p in ext.parameters)
|
|
|
|
for param in self.params:
|
|
|
|
if param not in ext_params:
|
|
|
|
# Raising config error because aliases might have come through
|
|
|
|
# the config.
|
|
|
|
msg = 'Parameter {} (defined in alias {}) is invalid for {}'
|
|
|
|
raise ConfigError(msg.format(param, self.name, ext.name))
|
|
|
|
|
|
|
|
|
|
|
|
class ExtensionMeta(type):
|
|
|
|
"""
|
|
|
|
This basically adds some magic to extensions to make implementing new extensions, such as
|
|
|
|
workloads less complicated.
|
|
|
|
|
|
|
|
It ensures that certain class attributes (specified by the ``to_propagate``
|
|
|
|
attribute of the metaclass) get propagated down the inheritance hierarchy. The assumption
|
|
|
|
is that the values of the attributes specified in the class are iterable; if that is not met,
|
|
|
|
Bad Things (tm) will happen.
|
|
|
|
|
|
|
|
This also provides virtual method implementation, similar to those in C-derived OO languages,
|
|
|
|
and alias specifications.
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
to_propagate = [
|
|
|
|
('parameters', Parameter, AttributeCollection),
|
|
|
|
('artifacts', Artifact, AttributeCollection),
|
|
|
|
('core_modules', str, ListCollection),
|
|
|
|
]
|
|
|
|
|
2015-06-11 17:39:17 +01:00
|
|
|
virtual_methods = ['validate', 'initialize', 'finalize']
|
|
|
|
global_virtuals = ['initialize', 'finalize']
|
2015-03-10 13:09:31 +00:00
|
|
|
|
|
|
|
def __new__(mcs, clsname, bases, attrs):
|
|
|
|
mcs._propagate_attributes(bases, attrs)
|
|
|
|
cls = type.__new__(mcs, clsname, bases, attrs)
|
|
|
|
mcs._setup_aliases(cls)
|
|
|
|
mcs._implement_virtual(cls, bases)
|
|
|
|
return cls
|
|
|
|
|
|
|
|
@classmethod
|
|
|
|
def _propagate_attributes(mcs, bases, attrs):
|
|
|
|
"""
|
|
|
|
For attributes specified by to_propagate, their values will be a union of
|
|
|
|
that specified for cls and it's bases (cls values overriding those of bases
|
|
|
|
in case of conflicts).
|
|
|
|
|
|
|
|
"""
|
|
|
|
for prop_attr, attr_cls, attr_collector_cls in mcs.to_propagate:
|
|
|
|
should_propagate = False
|
|
|
|
propagated = attr_collector_cls(attr_cls)
|
|
|
|
for base in bases:
|
|
|
|
if hasattr(base, prop_attr):
|
|
|
|
propagated += getattr(base, prop_attr) or []
|
|
|
|
should_propagate = True
|
|
|
|
if prop_attr in attrs:
|
|
|
|
propagated += attrs[prop_attr] or []
|
|
|
|
should_propagate = True
|
|
|
|
if should_propagate:
|
|
|
|
attrs[prop_attr] = propagated
|
|
|
|
|
|
|
|
@classmethod
|
|
|
|
def _setup_aliases(mcs, cls):
|
|
|
|
if hasattr(cls, 'aliases'):
|
|
|
|
aliases, cls.aliases = cls.aliases, AliasCollection()
|
|
|
|
for alias in aliases:
|
|
|
|
if isinstance(alias, basestring):
|
|
|
|
alias = Alias(alias)
|
|
|
|
alias.validate(cls)
|
|
|
|
alias.extension_name = cls.name
|
|
|
|
cls.aliases.add(alias)
|
|
|
|
|
|
|
|
@classmethod
|
|
|
|
def _implement_virtual(mcs, cls, bases):
|
|
|
|
"""
|
|
|
|
This implements automatic method propagation to the bases, so
|
|
|
|
that you don't have to do something like
|
|
|
|
|
|
|
|
super(cls, self).vmname()
|
|
|
|
|
2015-06-11 17:39:17 +01:00
|
|
|
This also ensures that the methods that have beend identified as
|
|
|
|
"globally virtual" are executed exactly once per WA execution, even if
|
|
|
|
invoked through instances of different subclasses
|
2015-03-10 13:09:31 +00:00
|
|
|
|
|
|
|
"""
|
|
|
|
methods = {}
|
2015-06-11 17:39:17 +01:00
|
|
|
called_globals = set()
|
2015-03-10 13:09:31 +00:00
|
|
|
for vmname in mcs.virtual_methods:
|
|
|
|
clsmethod = getattr(cls, vmname, None)
|
|
|
|
if clsmethod:
|
|
|
|
basemethods = [getattr(b, vmname) for b in bases if hasattr(b, vmname)]
|
|
|
|
methods[vmname] = [bm for bm in basemethods if bm != clsmethod]
|
|
|
|
methods[vmname].append(clsmethod)
|
|
|
|
|
2015-06-11 17:39:17 +01:00
|
|
|
def generate_method_wrapper(vname): # pylint: disable=unused-argument
|
|
|
|
# this creates a closure with the method name so that it
|
|
|
|
# does not need to be passed to the wrapper as an argument,
|
|
|
|
# leaving the wrapper to accept exactly the same set of
|
|
|
|
# arguments as the method it is wrapping.
|
|
|
|
name__ = vmname # pylint: disable=cell-var-from-loop
|
2015-03-10 13:09:31 +00:00
|
|
|
|
2015-06-11 17:39:17 +01:00
|
|
|
def wrapper(self, *args, **kwargs):
|
|
|
|
for dm in methods[name__]:
|
|
|
|
if name__ in mcs.global_virtuals:
|
|
|
|
if dm not in called_globals:
|
|
|
|
dm(self, *args, **kwargs)
|
|
|
|
called_globals.add(dm)
|
|
|
|
else:
|
|
|
|
dm(self, *args, **kwargs)
|
|
|
|
return wrapper
|
|
|
|
|
|
|
|
setattr(cls, vmname, generate_method_wrapper(vmname))
|
2015-03-10 13:09:31 +00:00
|
|
|
|
|
|
|
|
|
|
|
class Extension(object):
|
|
|
|
"""
|
|
|
|
Base class for all WA extensions. An extension is basically a plug-in.
|
|
|
|
It extends the functionality of WA in some way. Extensions are discovered
|
|
|
|
and loaded dynamically by the extension loader upon invocation of WA scripts.
|
|
|
|
Adding an extension is a matter of placing a class that implements an appropriate
|
|
|
|
interface somewhere it would be discovered by the loader. That "somewhere" is
|
|
|
|
typically one of the extension subdirectories under ``~/.workload_automation/``.
|
|
|
|
|
|
|
|
"""
|
|
|
|
__metaclass__ = ExtensionMeta
|
|
|
|
|
|
|
|
kind = None
|
|
|
|
name = None
|
|
|
|
parameters = [
|
|
|
|
Parameter('modules', kind=list,
|
|
|
|
description="""
|
|
|
|
Lists the modules to be loaded by this extension. A module is a plug-in that
|
|
|
|
further extends functionality of an extension.
|
|
|
|
"""),
|
|
|
|
]
|
|
|
|
artifacts = []
|
|
|
|
aliases = []
|
|
|
|
core_modules = []
|
|
|
|
|
|
|
|
@classmethod
|
|
|
|
def get_default_config(cls):
|
|
|
|
return {p.name: p.default for p in cls.parameters}
|
|
|
|
|
|
|
|
@property
|
|
|
|
def dependencies_directory(self):
|
|
|
|
return _d(os.path.join(settings.dependencies_directory, self.name))
|
|
|
|
|
|
|
|
@property
|
|
|
|
def _classname(self):
|
|
|
|
return self.__class__.__name__
|
|
|
|
|
|
|
|
def __init__(self, **kwargs):
|
|
|
|
self.__check_from_loader()
|
|
|
|
self.logger = logging.getLogger(self._classname)
|
|
|
|
self._modules = []
|
|
|
|
self.capabilities = getattr(self.__class__, 'capabilities', [])
|
|
|
|
for param in self.parameters:
|
|
|
|
param.set_value(self, kwargs.get(param.name))
|
|
|
|
for key in kwargs:
|
|
|
|
if key not in self.parameters:
|
|
|
|
message = 'Unexpected parameter "{}" for {}'
|
|
|
|
raise ConfigError(message.format(key, self.name))
|
|
|
|
|
|
|
|
def get_config(self):
|
|
|
|
"""
|
|
|
|
Returns current configuration (i.e. parameter values) of this extension.
|
|
|
|
|
|
|
|
"""
|
|
|
|
config = {}
|
|
|
|
for param in self.parameters:
|
|
|
|
config[param.name] = getattr(self, param.name, None)
|
|
|
|
return config
|
|
|
|
|
|
|
|
def validate(self):
|
|
|
|
"""
|
|
|
|
Perform basic validation to ensure that this extension is capable of running.
|
|
|
|
This is intended as an early check to ensure the extension has not been mis-configured,
|
|
|
|
rather than a comprehensive check (that may, e.g., require access to the execution
|
|
|
|
context).
|
|
|
|
|
|
|
|
This method may also be used to enforce (i.e. set as well as check) inter-parameter
|
|
|
|
constraints for the extension (e.g. if valid values for parameter A depend on the value
|
|
|
|
of parameter B -- something that is not possible to enfroce using ``Parameter``\ 's
|
|
|
|
``constraint`` attribute.
|
|
|
|
|
|
|
|
"""
|
|
|
|
if self.name is None:
|
|
|
|
raise ValidationError('Name not set for {}'.format(self._classname))
|
|
|
|
for param in self.parameters:
|
|
|
|
param.validate(self)
|
|
|
|
|
2015-06-17 17:41:24 +01:00
|
|
|
def initialize(self, context):
|
2015-06-11 17:39:17 +01:00
|
|
|
pass
|
|
|
|
|
2015-06-17 17:41:24 +01:00
|
|
|
def finalize(self, context):
|
2015-06-11 17:39:17 +01:00
|
|
|
pass
|
|
|
|
|
2015-03-10 13:09:31 +00:00
|
|
|
def check_artifacts(self, context, level):
|
|
|
|
"""
|
|
|
|
Make sure that all mandatory artifacts have been generated.
|
|
|
|
|
|
|
|
"""
|
|
|
|
for artifact in self.artifacts:
|
|
|
|
if artifact.level != level or not artifact.mandatory:
|
|
|
|
continue
|
|
|
|
fullpath = os.path.join(context.output_directory, artifact.path)
|
|
|
|
if not os.path.exists(fullpath):
|
|
|
|
message = 'Mandatory "{}" has not been generated for {}.'
|
|
|
|
raise ValidationError(message.format(artifact.path, self.name))
|
|
|
|
|
|
|
|
def __getattr__(self, name):
|
|
|
|
if name == '_modules':
|
|
|
|
raise ValueError('_modules accessed too early!')
|
|
|
|
for module in self._modules:
|
|
|
|
if hasattr(module, name):
|
|
|
|
return getattr(module, name)
|
|
|
|
raise AttributeError(name)
|
|
|
|
|
|
|
|
def load_modules(self, loader):
|
|
|
|
"""
|
|
|
|
Load the modules specified by the "modules" Parameter using the provided loader. A loader
|
|
|
|
can be any object that has an atribute called "get_module" that implements the following
|
|
|
|
signature::
|
|
|
|
|
|
|
|
get_module(name, owner, **kwargs)
|
|
|
|
|
|
|
|
and returns an instance of :class:`wlauto.core.extension.Module`. If the module with the
|
|
|
|
specified name is not found, the loader must raise an appropriate exception.
|
|
|
|
|
|
|
|
"""
|
|
|
|
modules = list(reversed(self.core_modules)) + list(reversed(self.modules or []))
|
|
|
|
if not modules:
|
|
|
|
return
|
|
|
|
for module_spec in modules:
|
|
|
|
if not module_spec:
|
|
|
|
continue
|
2015-06-18 09:42:40 +01:00
|
|
|
module = self._load_module(loader, module_spec)
|
|
|
|
self._install_module(module)
|
2015-03-10 13:09:31 +00:00
|
|
|
|
|
|
|
def has(self, capability):
|
|
|
|
"""Check if this extension has the specified capability. The alternative method ``can`` is
|
|
|
|
identical to this. Which to use is up to the caller depending on what makes semantic sense
|
|
|
|
in the context of the capability, e.g. ``can('hard_reset')`` vs ``has('active_cooling')``."""
|
|
|
|
return capability in self.capabilities
|
|
|
|
|
|
|
|
can = has
|
|
|
|
|
2015-06-18 09:42:40 +01:00
|
|
|
def _load_module(self, loader, module_spec):
|
|
|
|
if isinstance(module_spec, basestring):
|
|
|
|
name = module_spec
|
|
|
|
params = {}
|
|
|
|
elif isinstance(module_spec, dict):
|
|
|
|
if len(module_spec) != 1:
|
|
|
|
message = 'Invalid module spec: {}; dict must have exctly one key -- the module name.'
|
|
|
|
raise ValueError(message.format(module_spec))
|
|
|
|
name, params = module_spec.items()[0]
|
|
|
|
else:
|
|
|
|
message = 'Invalid module spec: {}; must be a string or a one-key dict.'
|
|
|
|
raise ValueError(message.format(module_spec))
|
|
|
|
|
|
|
|
if not isinstance(params, dict):
|
|
|
|
message = 'Invalid module spec: {}; dict value must also be a dict.'
|
|
|
|
raise ValueError(message.format(module_spec))
|
|
|
|
|
|
|
|
module = loader.get_module(name, owner=self, **params)
|
|
|
|
module.initialize(None)
|
|
|
|
return module
|
|
|
|
|
|
|
|
def _install_module(self, module):
|
|
|
|
for capability in module.capabilities:
|
|
|
|
if capability not in self.capabilities:
|
|
|
|
self.capabilities.append(capability)
|
|
|
|
self._modules.append(module)
|
|
|
|
|
2015-03-10 13:09:31 +00:00
|
|
|
def __check_from_loader(self):
|
|
|
|
"""
|
|
|
|
There are a few things that need to happen in order to get a valide extension instance.
|
|
|
|
Not all of them are currently done through standard Python initialisation mechanisms
|
|
|
|
(specifically, the loading of modules and alias resolution). In order to avoid potential
|
|
|
|
problems with not fully loaded extensions, make sure that an extension is *only* instantiated
|
|
|
|
by the loader.
|
|
|
|
|
|
|
|
"""
|
|
|
|
stack = inspect.stack()
|
|
|
|
stack.pop(0) # current frame
|
|
|
|
frame = stack.pop(0)
|
|
|
|
# skip throuth the init call chain
|
|
|
|
while stack and frame[3] == '__init__':
|
|
|
|
frame = stack.pop(0)
|
|
|
|
if frame[3] != '_instantiate':
|
|
|
|
message = 'Attempting to instantiate {} directly (must be done through an ExtensionLoader)'
|
|
|
|
raise RuntimeError(message.format(self.__class__.__name__))
|
|
|
|
|
|
|
|
|
|
|
|
class Module(Extension):
|
|
|
|
"""
|
|
|
|
This is a "plugin" for an extension this is intended to capture functionality that may be optional
|
|
|
|
for an extension, and so may or may not be present in a particular setup; or, conversely, functionality
|
|
|
|
that may be reusable between multiple devices, even if they are not with the same inheritance hierarchy.
|
|
|
|
|
|
|
|
In other words, a Module is roughly equivalent to a kernel module and its primary purpose is to
|
|
|
|
implement WA "drivers" for various peripherals that may or may not be present in a particular setup.
|
|
|
|
|
|
|
|
.. note:: A mudule is itself an Extension and can therefore have it's own modules.
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
capabilities = []
|
|
|
|
|
|
|
|
@property
|
|
|
|
def root_owner(self):
|
|
|
|
owner = self.owner
|
|
|
|
while isinstance(owner, Module) and owner is not self:
|
|
|
|
owner = owner.owner
|
|
|
|
return owner
|
|
|
|
|
|
|
|
def __init__(self, owner, **kwargs):
|
|
|
|
super(Module, self).__init__(**kwargs)
|
|
|
|
self.owner = owner
|
|
|
|
while isinstance(owner, Module):
|
|
|
|
if owner.name == self.name:
|
|
|
|
raise ValueError('Circular module import for {}'.format(self.name))
|
|
|
|
|
2015-06-17 17:41:24 +01:00
|
|
|
def initialize(self, context):
|
2015-03-10 13:09:31 +00:00
|
|
|
pass
|
|
|
|
|