2018-07-20 15:17:03 +01:00
|
|
|
# Copyright 2018 ARM Limited
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
#
|
|
|
|
|
|
|
|
"""
|
|
|
|
This module contains additional casting and adaptation functions for several
|
|
|
|
different datatypes and metadata types for use with the psycopg2 module. The
|
|
|
|
casting functions will transform Postgresql data types into Python objects, and
|
|
|
|
the adapters the reverse. They are named this way according to the psycopg2
|
|
|
|
conventions.
|
|
|
|
|
|
|
|
For more information about the available adapters and casters in the standard
|
|
|
|
psycopg2 module, please see:
|
|
|
|
|
|
|
|
http://initd.org/psycopg/docs/extensions.html#sql-adaptation-protocol-objects
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
import re
|
2018-11-27 17:34:52 +00:00
|
|
|
import os
|
2018-07-20 15:17:03 +01:00
|
|
|
|
|
|
|
try:
|
|
|
|
from psycopg2 import InterfaceError
|
|
|
|
from psycopg2.extensions import AsIs
|
2018-10-24 09:23:58 +01:00
|
|
|
except ImportError:
|
2018-07-20 15:17:03 +01:00
|
|
|
InterfaceError = None
|
|
|
|
AsIs = None
|
|
|
|
|
|
|
|
from wa.utils.types import level
|
|
|
|
|
|
|
|
|
2018-11-27 17:34:52 +00:00
|
|
|
POSTGRES_SCHEMA_DIR = os.path.join(os.path.dirname(__file__),
|
|
|
|
'..',
|
|
|
|
'commands',
|
|
|
|
'postgres_schemas')
|
|
|
|
|
|
|
|
|
2018-07-20 15:17:03 +01:00
|
|
|
def cast_level(value, cur): # pylint: disable=unused-argument
|
|
|
|
"""Generic Level caster for psycopg2"""
|
|
|
|
if not InterfaceError:
|
|
|
|
raise ImportError('There was a problem importing psycopg2.')
|
|
|
|
if value is None:
|
|
|
|
return None
|
|
|
|
|
|
|
|
m = re.match(r"([^\()]*)\((\d*)\)", value)
|
|
|
|
name = str(m.group(1))
|
|
|
|
number = int(m.group(2))
|
|
|
|
|
|
|
|
if m:
|
|
|
|
return level(name, number)
|
|
|
|
else:
|
|
|
|
raise InterfaceError("Bad level representation: {}".format(value))
|
|
|
|
|
|
|
|
|
|
|
|
def cast_vanilla(value, cur): # pylint: disable=unused-argument
|
|
|
|
"""Vanilla Type caster for psycopg2
|
|
|
|
|
|
|
|
Simply returns the string representation.
|
|
|
|
"""
|
|
|
|
if value is None:
|
|
|
|
return None
|
|
|
|
else:
|
|
|
|
return str(value)
|
|
|
|
|
|
|
|
|
|
|
|
# List functions and classes for adapting
|
|
|
|
|
|
|
|
def adapt_level(a_level):
|
|
|
|
"""Generic Level Adapter for psycopg2"""
|
|
|
|
return "{}({})".format(a_level.name, a_level.value)
|
|
|
|
|
|
|
|
|
|
|
|
class ListOfLevel(object):
|
|
|
|
value = None
|
|
|
|
|
|
|
|
def __init__(self, a_level):
|
|
|
|
self.value = a_level
|
|
|
|
|
|
|
|
def return_original(self):
|
|
|
|
return self.value
|
|
|
|
|
|
|
|
|
|
|
|
def adapt_ListOfX(adapt_X):
|
|
|
|
"""This will create a multi-column adapter for a particular type.
|
|
|
|
|
|
|
|
Note that the type must itself need to be in array form. Therefore
|
|
|
|
this function serves to seaprate out individual lists into multiple
|
|
|
|
big lists.
|
|
|
|
E.g. if the X adapter produces array (a,b,c)
|
|
|
|
then this adapter will take an list of Xs and produce a master array:
|
|
|
|
((a1,a2,a3),(b1,b2,b3),(c1,c2,c3))
|
|
|
|
|
|
|
|
Takes as its argument the adapter for the type which must produce an
|
|
|
|
SQL array string.
|
|
|
|
Note that you should NOT put the AsIs in the adapt_X function.
|
|
|
|
|
|
|
|
The need for this function arises from the fact that we may want to
|
|
|
|
actually handle list-creating types differently if they themselves
|
|
|
|
are in a list, as in the example above, we cannot simply adopt a
|
|
|
|
recursive strategy.
|
|
|
|
|
|
|
|
Note that master_list is the list representing the array. Each element
|
|
|
|
in the list will represent a subarray (column). If there is only one
|
|
|
|
subarray following processing then the outer {} are stripped to give a
|
|
|
|
1 dimensional array.
|
|
|
|
"""
|
|
|
|
def adapter_function(param):
|
|
|
|
if not AsIs:
|
|
|
|
raise ImportError('There was a problem importing psycopg2.')
|
|
|
|
param = param.value
|
|
|
|
result_list = []
|
|
|
|
for element in param: # Where param will be a list of X's
|
|
|
|
result_list.append(adapt_X(element))
|
|
|
|
test_element = result_list[0]
|
|
|
|
num_items = len(test_element.split(","))
|
|
|
|
master_list = []
|
|
|
|
for x in range(num_items):
|
|
|
|
master_list.append("")
|
|
|
|
for element in result_list:
|
|
|
|
element = element.strip("{").strip("}")
|
|
|
|
element = element.split(",")
|
|
|
|
for x in range(num_items):
|
|
|
|
master_list[x] = master_list[x] + element[x] + ","
|
|
|
|
if num_items > 1:
|
|
|
|
master_sql_string = "{"
|
|
|
|
else:
|
|
|
|
master_sql_string = ""
|
|
|
|
for x in range(num_items):
|
|
|
|
# Remove trailing comma
|
|
|
|
master_list[x] = master_list[x].strip(",")
|
|
|
|
master_list[x] = "{" + master_list[x] + "}"
|
|
|
|
master_sql_string = master_sql_string + master_list[x] + ","
|
|
|
|
master_sql_string = master_sql_string.strip(",")
|
|
|
|
if num_items > 1:
|
|
|
|
master_sql_string = master_sql_string + "}"
|
|
|
|
return AsIs("'{}'".format(master_sql_string))
|
|
|
|
return adapter_function
|
|
|
|
|
|
|
|
|
|
|
|
def return_as_is(adapt_X):
|
|
|
|
"""Returns the AsIs appended function of the function passed
|
|
|
|
|
|
|
|
This is useful for adapter functions intended to be used with the
|
|
|
|
adapt_ListOfX function, which must return strings, as it allows them
|
|
|
|
to be standalone adapters.
|
|
|
|
"""
|
|
|
|
if not AsIs:
|
|
|
|
raise ImportError('There was a problem importing psycopg2.')
|
|
|
|
|
|
|
|
def adapter_function(param):
|
|
|
|
return AsIs("'{}'".format(adapt_X(param)))
|
|
|
|
return adapter_function
|
|
|
|
|
|
|
|
|
|
|
|
def adapt_vanilla(param):
|
|
|
|
"""Vanilla adapter: simply returns the string representation"""
|
|
|
|
if not AsIs:
|
|
|
|
raise ImportError('There was a problem importing psycopg2.')
|
|
|
|
return AsIs("'{}'".format(param))
|
|
|
|
|
|
|
|
|
|
|
|
def create_iterable_adapter(array_columns, explicit_iterate=False):
|
|
|
|
"""Create an iterable adapter of a specified dimension
|
|
|
|
|
|
|
|
If explicit_iterate is True, then it will be assumed that the param needs
|
|
|
|
to be iterated upon via param.iteritems(). Otherwise it will simply be
|
|
|
|
iterated vanilla.
|
|
|
|
The value of array_columns will be equal to the number of indexed elements
|
|
|
|
per item in the param iterable. E.g. a list of 3-element-long lists has
|
|
|
|
3 elements per item in the iterable (the master list) and therefore
|
|
|
|
array_columns should be equal to 3.
|
|
|
|
If array_columns is 0, then this indicates that the iterable contains
|
|
|
|
single items.
|
|
|
|
"""
|
|
|
|
if not AsIs:
|
|
|
|
raise ImportError('There was a problem importing psycopg2.')
|
|
|
|
|
|
|
|
def adapt_iterable(param):
|
|
|
|
"""Adapts an iterable object into an SQL array"""
|
|
|
|
final_string = "" # String stores a string representation of the array
|
|
|
|
if param:
|
|
|
|
if array_columns > 1:
|
|
|
|
for index in range(array_columns):
|
|
|
|
array_string = ""
|
|
|
|
for item in param.iteritems():
|
|
|
|
array_string = array_string + str(item[index]) + ","
|
|
|
|
array_string = array_string.strip(",")
|
|
|
|
array_string = "{" + array_string + "}"
|
|
|
|
final_string = final_string + array_string + ","
|
|
|
|
final_string = final_string.strip(",")
|
|
|
|
else:
|
|
|
|
# Simply return each item in the array
|
|
|
|
if explicit_iterate:
|
|
|
|
for item in param.iteritems():
|
|
|
|
final_string = final_string + str(item) + ","
|
|
|
|
else:
|
|
|
|
for item in param:
|
|
|
|
final_string = final_string + str(item) + ","
|
2019-07-17 11:38:20 +01:00
|
|
|
return AsIs("'{{{}}}'".format(final_string))
|
2018-07-20 15:17:03 +01:00
|
|
|
return adapt_iterable
|
|
|
|
|
|
|
|
|
|
|
|
# For reference only and future use
|
|
|
|
def adapt_list(param):
|
|
|
|
"""Adapts a list into an array"""
|
|
|
|
if not AsIs:
|
|
|
|
raise ImportError('There was a problem importing psycopg2.')
|
|
|
|
final_string = ""
|
|
|
|
if param:
|
|
|
|
for item in param:
|
|
|
|
final_string = final_string + str(item) + ","
|
|
|
|
final_string = "{" + final_string + "}"
|
|
|
|
return AsIs("'{}'".format(final_string))
|
2018-11-27 17:34:52 +00:00
|
|
|
|
|
|
|
|
|
|
|
def get_schema(schemafilepath):
|
|
|
|
with open(schemafilepath, 'r') as sqlfile:
|
|
|
|
sql_commands = sqlfile.read()
|
|
|
|
|
|
|
|
schema_major = None
|
|
|
|
schema_minor = None
|
|
|
|
# Extract schema version if present
|
|
|
|
if sql_commands.startswith('--!VERSION'):
|
|
|
|
splitcommands = sql_commands.split('!ENDVERSION!\n')
|
|
|
|
schema_major, schema_minor = splitcommands[0].strip('--!VERSION!').split('.')
|
|
|
|
schema_major = int(schema_major)
|
|
|
|
schema_minor = int(schema_minor)
|
|
|
|
sql_commands = splitcommands[1]
|
|
|
|
return schema_major, schema_minor, sql_commands
|
|
|
|
|
|
|
|
|
|
|
|
def get_database_schema_version(conn):
|
|
|
|
with conn.cursor() as cursor:
|
|
|
|
cursor.execute('''SELECT
|
2019-07-18 14:02:44 +01:00
|
|
|
DatabaseMeta.schema_major,
|
|
|
|
DatabaseMeta.schema_minor
|
|
|
|
FROM
|
|
|
|
DatabaseMeta;''')
|
2018-11-27 17:34:52 +00:00
|
|
|
schema_major, schema_minor = cursor.fetchone()
|
|
|
|
return (schema_major, schema_minor)
|
|
|
|
|
|
|
|
|
|
|
|
def get_schema_versions(conn):
|
|
|
|
schemafilepath = os.path.join(POSTGRES_SCHEMA_DIR, 'postgres_schema.sql')
|
|
|
|
cur_major_version, cur_minor_version, _ = get_schema(schemafilepath)
|
|
|
|
db_schema_version = get_database_schema_version(conn)
|
|
|
|
return (cur_major_version, cur_minor_version), db_schema_version
|