2015-03-10 13:09:31 +00:00
|
|
|
# Copyright 2013-2015 ARM Limited
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
#
|
|
|
|
|
|
|
|
# pylint: disable=no-member
|
|
|
|
|
|
|
|
"""
|
|
|
|
This module contains the execution logic for Workload Automation. It defines the
|
|
|
|
following actors:
|
|
|
|
|
|
|
|
WorkloadSpec: Identifies the workload to be run and defines parameters under
|
|
|
|
which it should be executed.
|
|
|
|
|
|
|
|
Executor: Responsible for the overall execution process. It instantiates
|
|
|
|
and/or intialises the other actors, does any necessary vaidation
|
|
|
|
and kicks off the whole process.
|
|
|
|
|
|
|
|
Execution Context: Provides information about the current state of run
|
|
|
|
execution to instrumentation.
|
|
|
|
|
|
|
|
RunInfo: Information about the current run.
|
|
|
|
|
|
|
|
Runner: This executes workload specs that are passed to it. It goes through
|
|
|
|
stages of execution, emitting an appropriate signal at each step to
|
|
|
|
allow instrumentation to do its stuff.
|
|
|
|
|
|
|
|
"""
|
|
|
|
import os
|
|
|
|
import uuid
|
|
|
|
import logging
|
|
|
|
import subprocess
|
|
|
|
import random
|
|
|
|
from copy import copy
|
|
|
|
from datetime import datetime
|
|
|
|
from contextlib import contextmanager
|
|
|
|
from collections import Counter, defaultdict, OrderedDict
|
|
|
|
from itertools import izip_longest
|
|
|
|
|
|
|
|
import wlauto.core.signal as signal
|
|
|
|
from wlauto.core import instrumentation
|
|
|
|
from wlauto.core.bootstrap import settings
|
|
|
|
from wlauto.core.extension import Artifact
|
|
|
|
from wlauto.core.configuration import RunConfiguration
|
|
|
|
from wlauto.core.extension_loader import ExtensionLoader
|
|
|
|
from wlauto.core.resolver import ResourceResolver
|
|
|
|
from wlauto.core.result import ResultManager, IterationResult, RunResult
|
|
|
|
from wlauto.exceptions import (WAError, ConfigError, TimeoutError, InstrumentError,
|
|
|
|
DeviceError, DeviceNotRespondingError)
|
|
|
|
from wlauto.utils.misc import ensure_directory_exists as _d, get_traceback, merge_dicts, format_duration
|
|
|
|
|
|
|
|
|
|
|
|
# The maximum number of reboot attempts for an iteration.
|
|
|
|
MAX_REBOOT_ATTEMPTS = 3
|
|
|
|
|
|
|
|
# If something went wrong during device initialization, wait this
|
|
|
|
# long (in seconds) before retrying. This is necessary, as retrying
|
|
|
|
# immediately may not give the device enough time to recover to be able
|
|
|
|
# to reboot.
|
|
|
|
REBOOT_DELAY = 3
|
|
|
|
|
|
|
|
|
|
|
|
class RunInfo(object):
|
|
|
|
"""
|
2016-01-14 12:05:49 +00:00
|
|
|
Information about the current run, such as its unique ID, run
|
2015-03-10 13:09:31 +00:00
|
|
|
time, etc.
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, config):
|
|
|
|
self.config = config
|
|
|
|
self.uuid = uuid.uuid4()
|
|
|
|
self.start_time = None
|
|
|
|
self.end_time = None
|
|
|
|
self.duration = None
|
|
|
|
self.project = config.project
|
|
|
|
self.project_stage = config.project_stage
|
2016-01-26 14:20:18 +00:00
|
|
|
self.run_name = config.run_name or "{}_{}".format(os.path.split(settings.output_directory)[1],
|
|
|
|
datetime.utcnow().strftime("%Y-%m-%d_%H-%M-%S"))
|
2015-03-10 13:09:31 +00:00
|
|
|
self.notes = None
|
|
|
|
self.device_properties = {}
|
|
|
|
|
|
|
|
def to_dict(self):
|
|
|
|
d = copy(self.__dict__)
|
|
|
|
d['uuid'] = str(self.uuid)
|
|
|
|
del d['config']
|
|
|
|
d = merge_dicts(d, self.config.to_dict())
|
|
|
|
return d
|
|
|
|
|
|
|
|
|
|
|
|
class ExecutionContext(object):
|
|
|
|
"""
|
|
|
|
Provides a context for instrumentation. Keeps track of things like
|
|
|
|
current workload and iteration.
|
|
|
|
|
|
|
|
This class also provides two status members that can be used by workloads
|
|
|
|
and instrumentation to keep track of arbitrary state. ``result``
|
|
|
|
is reset on each new iteration of a workload; run_status is maintained
|
|
|
|
throughout a Workload Automation run.
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
# These are the artifacts generated by the core framework.
|
|
|
|
default_run_artifacts = [
|
|
|
|
Artifact('runlog', 'run.log', 'log', mandatory=True,
|
|
|
|
description='The log for the entire run.'),
|
|
|
|
]
|
|
|
|
|
|
|
|
@property
|
|
|
|
def current_iteration(self):
|
|
|
|
if self.current_job:
|
|
|
|
spec_id = self.current_job.spec.id
|
|
|
|
return self.job_iteration_counts[spec_id]
|
|
|
|
else:
|
|
|
|
return None
|
|
|
|
|
2015-06-10 15:01:02 +01:00
|
|
|
@property
|
|
|
|
def job_status(self):
|
|
|
|
if not self.current_job:
|
|
|
|
return None
|
|
|
|
return self.current_job.result.status
|
|
|
|
|
2015-03-10 13:09:31 +00:00
|
|
|
@property
|
|
|
|
def workload(self):
|
|
|
|
return getattr(self.spec, 'workload', None)
|
|
|
|
|
|
|
|
@property
|
|
|
|
def spec(self):
|
|
|
|
return getattr(self.current_job, 'spec', None)
|
|
|
|
|
|
|
|
@property
|
|
|
|
def result(self):
|
2015-04-14 14:38:59 +01:00
|
|
|
return getattr(self.current_job, 'result', self.run_result)
|
2015-03-10 13:09:31 +00:00
|
|
|
|
|
|
|
def __init__(self, device, config):
|
|
|
|
self.device = device
|
|
|
|
self.config = config
|
|
|
|
self.reboot_policy = config.reboot_policy
|
|
|
|
self.output_directory = None
|
|
|
|
self.current_job = None
|
|
|
|
self.resolver = None
|
|
|
|
self.last_error = None
|
|
|
|
self.run_info = None
|
|
|
|
self.run_result = None
|
|
|
|
self.run_output_directory = settings.output_directory
|
|
|
|
self.host_working_directory = settings.meta_directory
|
|
|
|
self.iteration_artifacts = None
|
|
|
|
self.run_artifacts = copy(self.default_run_artifacts)
|
|
|
|
self.job_iteration_counts = defaultdict(int)
|
|
|
|
self.aborted = False
|
2015-04-09 11:28:53 +01:00
|
|
|
self.runner = None
|
2015-03-10 13:09:31 +00:00
|
|
|
if settings.agenda:
|
|
|
|
self.run_artifacts.append(Artifact('agenda',
|
|
|
|
os.path.join(self.host_working_directory,
|
|
|
|
os.path.basename(settings.agenda)),
|
|
|
|
'meta',
|
|
|
|
mandatory=True,
|
|
|
|
description='Agenda for this run.'))
|
2015-06-18 11:34:32 +01:00
|
|
|
for i, filepath in enumerate(settings.loaded_files, 1):
|
|
|
|
name = 'config_{}'.format(i)
|
|
|
|
path = os.path.join(self.host_working_directory,
|
|
|
|
name + os.path.splitext(filepath)[1])
|
|
|
|
self.run_artifacts.append(Artifact(name,
|
|
|
|
path,
|
2015-03-10 13:09:31 +00:00
|
|
|
kind='meta',
|
|
|
|
mandatory=True,
|
|
|
|
description='Config file used for the run.'))
|
|
|
|
|
|
|
|
def initialize(self):
|
|
|
|
if not os.path.isdir(self.run_output_directory):
|
|
|
|
os.makedirs(self.run_output_directory)
|
|
|
|
self.output_directory = self.run_output_directory
|
|
|
|
self.resolver = ResourceResolver(self.config)
|
|
|
|
self.run_info = RunInfo(self.config)
|
2015-04-14 14:38:59 +01:00
|
|
|
self.run_result = RunResult(self.run_info, self.run_output_directory)
|
2015-03-10 13:09:31 +00:00
|
|
|
|
|
|
|
def next_job(self, job):
|
|
|
|
"""Invoked by the runner when starting a new iteration of workload execution."""
|
|
|
|
self.current_job = job
|
|
|
|
self.job_iteration_counts[self.spec.id] += 1
|
|
|
|
if not self.aborted:
|
|
|
|
outdir_name = '_'.join(map(str, [self.spec.label, self.spec.id, self.current_iteration]))
|
|
|
|
self.output_directory = _d(os.path.join(self.run_output_directory, outdir_name))
|
|
|
|
self.iteration_artifacts = [wa for wa in self.workload.artifacts]
|
2015-04-14 14:38:59 +01:00
|
|
|
self.current_job.result.iteration = self.current_iteration
|
|
|
|
self.current_job.result.output_directory = self.output_directory
|
2015-03-10 13:09:31 +00:00
|
|
|
|
|
|
|
def end_job(self):
|
|
|
|
if self.current_job.result.status == IterationResult.ABORTED:
|
|
|
|
self.aborted = True
|
|
|
|
self.current_job = None
|
|
|
|
self.output_directory = self.run_output_directory
|
|
|
|
|
2015-05-14 15:10:42 +01:00
|
|
|
def add_metric(self, *args, **kwargs):
|
|
|
|
self.result.add_metric(*args, **kwargs)
|
|
|
|
|
2016-04-14 11:19:46 +01:00
|
|
|
def add_classifiers(self, **kwargs):
|
|
|
|
self.result.classifiers.update(kwargs)
|
|
|
|
|
2015-03-10 13:09:31 +00:00
|
|
|
def add_artifact(self, name, path, kind, *args, **kwargs):
|
|
|
|
if self.current_job is None:
|
|
|
|
self.add_run_artifact(name, path, kind, *args, **kwargs)
|
|
|
|
else:
|
|
|
|
self.add_iteration_artifact(name, path, kind, *args, **kwargs)
|
|
|
|
|
|
|
|
def add_run_artifact(self, name, path, kind, *args, **kwargs):
|
|
|
|
path = _check_artifact_path(path, self.run_output_directory)
|
|
|
|
self.run_artifacts.append(Artifact(name, path, kind, Artifact.ITERATION, *args, **kwargs))
|
|
|
|
|
|
|
|
def add_iteration_artifact(self, name, path, kind, *args, **kwargs):
|
|
|
|
path = _check_artifact_path(path, self.output_directory)
|
|
|
|
self.iteration_artifacts.append(Artifact(name, path, kind, Artifact.RUN, *args, **kwargs))
|
|
|
|
|
|
|
|
def get_artifact(self, name):
|
|
|
|
if self.iteration_artifacts:
|
|
|
|
for art in self.iteration_artifacts:
|
|
|
|
if art.name == name:
|
|
|
|
return art
|
|
|
|
for art in self.run_artifacts:
|
|
|
|
if art.name == name:
|
|
|
|
return art
|
|
|
|
return None
|
|
|
|
|
|
|
|
|
|
|
|
def _check_artifact_path(path, rootpath):
|
|
|
|
if path.startswith(rootpath):
|
|
|
|
return os.path.abspath(path)
|
|
|
|
rootpath = os.path.abspath(rootpath)
|
|
|
|
full_path = os.path.join(rootpath, path)
|
|
|
|
if not os.path.isfile(full_path):
|
|
|
|
raise ValueError('Cannot add artifact because {} does not exist.'.format(full_path))
|
|
|
|
return full_path
|
|
|
|
|
|
|
|
|
|
|
|
class Executor(object):
|
|
|
|
"""
|
|
|
|
The ``Executor``'s job is to set up the execution context and pass to a ``Runner``
|
|
|
|
along with a loaded run specification. Once the ``Runner`` has done its thing,
|
|
|
|
the ``Executor`` performs some final reporint before returning.
|
|
|
|
|
|
|
|
The initial context set up involves combining configuration from various sources,
|
|
|
|
loading of requided workloads, loading and installation of instruments and result
|
|
|
|
processors, etc. Static validation of the combined configuration is also performed.
|
|
|
|
|
|
|
|
"""
|
|
|
|
# pylint: disable=R0915
|
|
|
|
|
|
|
|
def __init__(self):
|
|
|
|
self.logger = logging.getLogger('Executor')
|
|
|
|
self.error_logged = False
|
|
|
|
self.warning_logged = False
|
|
|
|
self.config = None
|
|
|
|
self.ext_loader = None
|
|
|
|
self.device = None
|
|
|
|
self.context = None
|
|
|
|
|
|
|
|
def execute(self, agenda, selectors=None): # NOQA
|
|
|
|
"""
|
|
|
|
Execute the run specified by an agenda. Optionally, selectors may be used to only
|
|
|
|
selecute a subset of the specified agenda.
|
|
|
|
|
|
|
|
Params::
|
|
|
|
|
|
|
|
:agenda: an ``Agenda`` instance to be executed.
|
|
|
|
:selectors: A dict mapping selector name to the coresponding values.
|
|
|
|
|
|
|
|
**Selectors**
|
|
|
|
|
|
|
|
Currently, the following seectors are supported:
|
|
|
|
|
|
|
|
ids
|
|
|
|
The value must be a sequence of workload specfication IDs to be executed. Note
|
|
|
|
that if sections are specified inthe agenda, the workload specifacation ID will
|
|
|
|
be a combination of the section and workload IDs.
|
|
|
|
|
|
|
|
"""
|
|
|
|
signal.connect(self._error_signalled_callback, signal.ERROR_LOGGED)
|
|
|
|
signal.connect(self._warning_signalled_callback, signal.WARNING_LOGGED)
|
|
|
|
|
|
|
|
self.logger.info('Initializing')
|
|
|
|
self.ext_loader = ExtensionLoader(packages=settings.extension_packages,
|
|
|
|
paths=settings.extension_paths)
|
|
|
|
|
|
|
|
self.logger.debug('Loading run configuration.')
|
|
|
|
self.config = RunConfiguration(self.ext_loader)
|
|
|
|
for filepath in settings.get_config_paths():
|
|
|
|
self.config.load_config(filepath)
|
|
|
|
self.config.set_agenda(agenda, selectors)
|
|
|
|
self.config.finalize()
|
|
|
|
config_outfile = os.path.join(settings.meta_directory, 'run_config.json')
|
|
|
|
with open(config_outfile, 'w') as wfh:
|
|
|
|
self.config.serialize(wfh)
|
|
|
|
|
|
|
|
self.logger.debug('Initialising device configuration.')
|
|
|
|
if not self.config.device:
|
|
|
|
raise ConfigError('Make sure a device is specified in the config.')
|
|
|
|
self.device = self.ext_loader.get_device(self.config.device, **self.config.device_config)
|
|
|
|
self.device.validate()
|
|
|
|
|
|
|
|
self.context = ExecutionContext(self.device, self.config)
|
|
|
|
|
|
|
|
self.logger.debug('Loading resource discoverers.')
|
|
|
|
self.context.initialize()
|
|
|
|
self.context.resolver.load()
|
|
|
|
self.context.add_artifact('run_config', config_outfile, 'meta')
|
|
|
|
|
|
|
|
self.logger.debug('Installing instrumentation')
|
|
|
|
for name, params in self.config.instrumentation.iteritems():
|
|
|
|
instrument = self.ext_loader.get_instrument(name, self.device, **params)
|
|
|
|
instrumentation.install(instrument)
|
|
|
|
instrumentation.validate()
|
|
|
|
|
|
|
|
self.logger.debug('Installing result processors')
|
|
|
|
result_manager = ResultManager()
|
|
|
|
for name, params in self.config.result_processors.iteritems():
|
|
|
|
processor = self.ext_loader.get_result_processor(name, **params)
|
|
|
|
result_manager.install(processor)
|
|
|
|
result_manager.validate()
|
|
|
|
|
|
|
|
self.logger.debug('Loading workload specs')
|
|
|
|
for workload_spec in self.config.workload_specs:
|
|
|
|
workload_spec.load(self.device, self.ext_loader)
|
|
|
|
workload_spec.workload.init_resources(self.context)
|
|
|
|
workload_spec.workload.validate()
|
|
|
|
|
|
|
|
if self.config.flashing_config:
|
|
|
|
if not self.device.flasher:
|
|
|
|
msg = 'flashing_config specified for {} device that does not support flashing.'
|
|
|
|
raise ConfigError(msg.format(self.device.name))
|
|
|
|
self.logger.debug('Flashing the device')
|
|
|
|
self.device.flasher.flash(self.device)
|
|
|
|
|
|
|
|
self.logger.info('Running workloads')
|
|
|
|
runner = self._get_runner(result_manager)
|
|
|
|
runner.init_queue(self.config.workload_specs)
|
|
|
|
runner.run()
|
2016-08-26 17:13:57 +01:00
|
|
|
|
|
|
|
if getattr(self.config, "clean_up", False):
|
|
|
|
self.logger.info('Clearing WA files from device')
|
|
|
|
self.device.delete_file(self.device.binaries_directory)
|
|
|
|
self.device.delete_file(self.device.working_directory)
|
2015-03-10 13:09:31 +00:00
|
|
|
self.execute_postamble()
|
|
|
|
|
|
|
|
def execute_postamble(self):
|
|
|
|
"""
|
|
|
|
This happens after the run has completed. The overall results of the run are
|
|
|
|
summarised to the user.
|
|
|
|
|
|
|
|
"""
|
|
|
|
result = self.context.run_result
|
|
|
|
counter = Counter()
|
|
|
|
for ir in result.iteration_results:
|
|
|
|
counter[ir.status] += 1
|
|
|
|
self.logger.info('Done.')
|
|
|
|
self.logger.info('Run duration: {}'.format(format_duration(self.context.run_info.duration)))
|
|
|
|
status_summary = 'Ran a total of {} iterations: '.format(sum(self.context.job_iteration_counts.values()))
|
|
|
|
parts = []
|
|
|
|
for status in IterationResult.values:
|
|
|
|
if status in counter:
|
|
|
|
parts.append('{} {}'.format(counter[status], status))
|
|
|
|
self.logger.info(status_summary + ', '.join(parts))
|
|
|
|
self.logger.info('Results can be found in {}'.format(settings.output_directory))
|
|
|
|
|
|
|
|
if self.error_logged:
|
|
|
|
self.logger.warn('There were errors during execution.')
|
|
|
|
self.logger.warn('Please see {}'.format(settings.log_file))
|
|
|
|
elif self.warning_logged:
|
|
|
|
self.logger.warn('There were warnings during execution.')
|
|
|
|
self.logger.warn('Please see {}'.format(settings.log_file))
|
|
|
|
|
|
|
|
def _get_runner(self, result_manager):
|
|
|
|
if not self.config.execution_order or self.config.execution_order == 'by_iteration':
|
|
|
|
if self.config.reboot_policy == 'each_spec':
|
|
|
|
self.logger.info('each_spec reboot policy with the default by_iteration execution order is '
|
|
|
|
'equivalent to each_iteration policy.')
|
|
|
|
runnercls = ByIterationRunner
|
|
|
|
elif self.config.execution_order in ['classic', 'by_spec']:
|
|
|
|
runnercls = BySpecRunner
|
|
|
|
elif self.config.execution_order == 'by_section':
|
|
|
|
runnercls = BySectionRunner
|
|
|
|
elif self.config.execution_order == 'random':
|
|
|
|
runnercls = RandomRunner
|
|
|
|
else:
|
|
|
|
raise ConfigError('Unexpected execution order: {}'.format(self.config.execution_order))
|
|
|
|
return runnercls(self.device, self.context, result_manager)
|
|
|
|
|
|
|
|
def _error_signalled_callback(self):
|
|
|
|
self.error_logged = True
|
|
|
|
signal.disconnect(self._error_signalled_callback, signal.ERROR_LOGGED)
|
|
|
|
|
|
|
|
def _warning_signalled_callback(self):
|
|
|
|
self.warning_logged = True
|
|
|
|
signal.disconnect(self._warning_signalled_callback, signal.WARNING_LOGGED)
|
|
|
|
|
|
|
|
|
|
|
|
class RunnerJob(object):
|
|
|
|
"""
|
|
|
|
Represents a single execution of a ``RunnerJobDescription``. There will be one created for each iteration
|
|
|
|
specified by ``RunnerJobDescription.number_of_iterations``.
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
2015-06-18 16:36:56 +01:00
|
|
|
def __init__(self, spec, retry=0):
|
2015-03-10 13:09:31 +00:00
|
|
|
self.spec = spec
|
2015-06-18 16:36:56 +01:00
|
|
|
self.retry = retry
|
2015-03-10 13:09:31 +00:00
|
|
|
self.iteration = None
|
|
|
|
self.result = IterationResult(self.spec)
|
|
|
|
|
|
|
|
|
|
|
|
class Runner(object):
|
|
|
|
"""
|
|
|
|
This class is responsible for actually performing a workload automation
|
|
|
|
run. The main responsibility of this class is to emit appropriate signals
|
|
|
|
at the various stages of the run to allow things like traces an other
|
|
|
|
instrumentation to hook into the process.
|
|
|
|
|
|
|
|
This is an abstract base class that defines each step of the run, but not
|
|
|
|
the order in which those steps are executed, which is left to the concrete
|
|
|
|
derived classes.
|
|
|
|
|
|
|
|
"""
|
|
|
|
class _RunnerError(Exception):
|
|
|
|
"""Internal runner error."""
|
|
|
|
pass
|
|
|
|
|
2015-06-18 16:36:56 +01:00
|
|
|
@property
|
|
|
|
def config(self):
|
|
|
|
return self.context.config
|
|
|
|
|
2015-03-10 13:09:31 +00:00
|
|
|
@property
|
|
|
|
def current_job(self):
|
|
|
|
if self.job_queue:
|
|
|
|
return self.job_queue[0]
|
|
|
|
return None
|
|
|
|
|
|
|
|
@property
|
|
|
|
def previous_job(self):
|
|
|
|
if self.completed_jobs:
|
|
|
|
return self.completed_jobs[-1]
|
|
|
|
return None
|
|
|
|
|
|
|
|
@property
|
|
|
|
def next_job(self):
|
|
|
|
if self.job_queue:
|
|
|
|
if len(self.job_queue) > 1:
|
|
|
|
return self.job_queue[1]
|
|
|
|
return None
|
|
|
|
|
|
|
|
@property
|
|
|
|
def spec_changed(self):
|
|
|
|
if self.previous_job is None and self.current_job is not None: # Start of run
|
|
|
|
return True
|
|
|
|
if self.previous_job is not None and self.current_job is None: # End of run
|
|
|
|
return True
|
|
|
|
return self.current_job.spec.id != self.previous_job.spec.id
|
|
|
|
|
|
|
|
@property
|
|
|
|
def spec_will_change(self):
|
|
|
|
if self.current_job is None and self.next_job is not None: # Start of run
|
|
|
|
return True
|
|
|
|
if self.current_job is not None and self.next_job is None: # End of run
|
|
|
|
return True
|
|
|
|
return self.current_job.spec.id != self.next_job.spec.id
|
|
|
|
|
|
|
|
def __init__(self, device, context, result_manager):
|
|
|
|
self.device = device
|
|
|
|
self.context = context
|
|
|
|
self.result_manager = result_manager
|
|
|
|
self.logger = logging.getLogger('Runner')
|
|
|
|
self.job_queue = []
|
|
|
|
self.completed_jobs = []
|
|
|
|
self._initial_reset = True
|
|
|
|
|
|
|
|
def init_queue(self, specs):
|
|
|
|
raise NotImplementedError()
|
|
|
|
|
|
|
|
def run(self): # pylint: disable=too-many-branches
|
|
|
|
self._send(signal.RUN_START)
|
|
|
|
self._initialize_run()
|
|
|
|
|
|
|
|
try:
|
|
|
|
while self.job_queue:
|
|
|
|
try:
|
|
|
|
self._init_job()
|
|
|
|
self._run_job()
|
|
|
|
except KeyboardInterrupt:
|
|
|
|
self.current_job.result.status = IterationResult.ABORTED
|
|
|
|
raise
|
|
|
|
except Exception, e: # pylint: disable=broad-except
|
|
|
|
self.current_job.result.status = IterationResult.FAILED
|
|
|
|
self.current_job.result.add_event(e.message)
|
|
|
|
if isinstance(e, DeviceNotRespondingError):
|
|
|
|
self.logger.info('Device appears to be unresponsive.')
|
|
|
|
if self.context.reboot_policy.can_reboot and self.device.can('reset_power'):
|
|
|
|
self.logger.info('Attempting to hard-reset the device...')
|
|
|
|
try:
|
2015-08-17 14:36:28 +01:00
|
|
|
self.device.boot(hard=True)
|
2015-03-10 13:09:31 +00:00
|
|
|
self.device.connect()
|
|
|
|
except DeviceError: # hard_boot not implemented for the device.
|
|
|
|
raise e
|
|
|
|
else:
|
|
|
|
raise e
|
|
|
|
else: # not a DeviceNotRespondingError
|
|
|
|
self.logger.error(e)
|
|
|
|
finally:
|
|
|
|
self._finalize_job()
|
|
|
|
except KeyboardInterrupt:
|
|
|
|
self.logger.info('Got CTRL-C. Finalizing run... (CTRL-C again to abort).')
|
|
|
|
# Skip through the remaining jobs.
|
|
|
|
while self.job_queue:
|
|
|
|
self.context.next_job(self.current_job)
|
|
|
|
self.current_job.result.status = IterationResult.ABORTED
|
|
|
|
self._finalize_job()
|
|
|
|
except DeviceNotRespondingError:
|
|
|
|
self.logger.info('Device unresponsive and recovery not possible. Skipping the rest of the run.')
|
|
|
|
self.context.aborted = True
|
|
|
|
while self.job_queue:
|
|
|
|
self.context.next_job(self.current_job)
|
|
|
|
self.current_job.result.status = IterationResult.SKIPPED
|
|
|
|
self._finalize_job()
|
|
|
|
|
|
|
|
instrumentation.enable_all()
|
|
|
|
self._finalize_run()
|
|
|
|
self._process_results()
|
|
|
|
|
|
|
|
self.result_manager.finalize(self.context)
|
|
|
|
self._send(signal.RUN_END)
|
|
|
|
|
|
|
|
def _initialize_run(self):
|
2015-04-09 11:28:53 +01:00
|
|
|
self.context.runner = self
|
2015-03-10 13:09:31 +00:00
|
|
|
self.context.run_info.start_time = datetime.utcnow()
|
2015-04-10 17:04:22 +01:00
|
|
|
self._connect_to_device()
|
2015-03-10 13:09:31 +00:00
|
|
|
self.logger.info('Initializing device')
|
|
|
|
self.device.initialize(self.context)
|
|
|
|
|
2015-06-11 17:39:17 +01:00
|
|
|
self.logger.info('Initializing workloads')
|
|
|
|
for workload_spec in self.context.config.workload_specs:
|
|
|
|
workload_spec.workload.initialize(self.context)
|
|
|
|
|
2015-03-10 13:09:31 +00:00
|
|
|
props = self.device.get_properties(self.context)
|
|
|
|
self.context.run_info.device_properties = props
|
|
|
|
self.result_manager.initialize(self.context)
|
|
|
|
self._send(signal.RUN_INIT)
|
|
|
|
|
|
|
|
if instrumentation.check_failures():
|
|
|
|
raise InstrumentError('Detected failure(s) during instrumentation initialization.')
|
|
|
|
|
2015-04-10 17:04:22 +01:00
|
|
|
def _connect_to_device(self):
|
|
|
|
if self.context.reboot_policy.perform_initial_boot:
|
|
|
|
try:
|
|
|
|
self.device.connect()
|
|
|
|
except DeviceError: # device may be offline
|
|
|
|
if self.device.can('reset_power'):
|
2015-04-24 17:51:55 +01:00
|
|
|
with self._signal_wrap('INITIAL_BOOT'):
|
2015-08-17 14:36:28 +01:00
|
|
|
self.device.boot(hard=True)
|
2015-04-10 17:04:22 +01:00
|
|
|
else:
|
|
|
|
raise DeviceError('Cannot connect to device for initial reboot; '
|
|
|
|
'and device does not support hard reset.')
|
|
|
|
else: # successfully connected
|
|
|
|
self.logger.info('\tBooting device')
|
|
|
|
with self._signal_wrap('INITIAL_BOOT'):
|
|
|
|
self._reboot_device()
|
|
|
|
else:
|
|
|
|
self.logger.info('Connecting to device')
|
|
|
|
self.device.connect()
|
|
|
|
|
2015-03-10 13:09:31 +00:00
|
|
|
def _init_job(self):
|
|
|
|
self.current_job.result.status = IterationResult.RUNNING
|
|
|
|
self.context.next_job(self.current_job)
|
|
|
|
|
|
|
|
def _run_job(self): # pylint: disable=too-many-branches
|
|
|
|
spec = self.current_job.spec
|
|
|
|
if not spec.enabled:
|
|
|
|
self.logger.info('Skipping workload %s (iteration %s)', spec, self.context.current_iteration)
|
|
|
|
self.current_job.result.status = IterationResult.SKIPPED
|
|
|
|
return
|
|
|
|
|
|
|
|
self.logger.info('Running workload %s (iteration %s)', spec, self.context.current_iteration)
|
|
|
|
if spec.flash:
|
|
|
|
if not self.context.reboot_policy.can_reboot:
|
|
|
|
raise ConfigError('Cannot flash as reboot_policy does not permit rebooting.')
|
|
|
|
if not self.device.can('flash'):
|
|
|
|
raise DeviceError('Device does not support flashing.')
|
|
|
|
self._flash_device(spec.flash)
|
|
|
|
elif not self.completed_jobs:
|
|
|
|
# Never reboot on the very fist job of a run, as we would have done
|
|
|
|
# the initial reboot if a reboot was needed.
|
|
|
|
pass
|
|
|
|
elif self.context.reboot_policy.reboot_on_each_spec and self.spec_changed:
|
|
|
|
self.logger.debug('Rebooting on spec change.')
|
|
|
|
self._reboot_device()
|
|
|
|
elif self.context.reboot_policy.reboot_on_each_iteration:
|
|
|
|
self.logger.debug('Rebooting on iteration.')
|
|
|
|
self._reboot_device()
|
|
|
|
|
|
|
|
instrumentation.disable_all()
|
|
|
|
instrumentation.enable(spec.instrumentation)
|
|
|
|
self.device.start()
|
|
|
|
|
|
|
|
if self.spec_changed:
|
|
|
|
self._send(signal.WORKLOAD_SPEC_START)
|
|
|
|
self._send(signal.ITERATION_START)
|
|
|
|
|
|
|
|
try:
|
|
|
|
setup_ok = False
|
|
|
|
with self._handle_errors('Setting up device parameters'):
|
|
|
|
self.device.set_runtime_parameters(spec.runtime_parameters)
|
|
|
|
setup_ok = True
|
|
|
|
|
|
|
|
if setup_ok:
|
|
|
|
with self._handle_errors('running {}'.format(spec.workload.name)):
|
|
|
|
self.current_job.result.status = IterationResult.RUNNING
|
|
|
|
self._run_workload_iteration(spec.workload)
|
|
|
|
else:
|
|
|
|
self.logger.info('\tSkipping the rest of the iterations for this spec.')
|
|
|
|
spec.enabled = False
|
|
|
|
except KeyboardInterrupt:
|
|
|
|
self._send(signal.ITERATION_END)
|
|
|
|
self._send(signal.WORKLOAD_SPEC_END)
|
|
|
|
raise
|
|
|
|
else:
|
|
|
|
self._send(signal.ITERATION_END)
|
|
|
|
if self.spec_will_change or not spec.enabled:
|
|
|
|
self._send(signal.WORKLOAD_SPEC_END)
|
|
|
|
finally:
|
|
|
|
self.device.stop()
|
|
|
|
|
|
|
|
def _finalize_job(self):
|
|
|
|
self.context.run_result.iteration_results.append(self.current_job.result)
|
2015-06-18 16:36:56 +01:00
|
|
|
job = self.job_queue.pop(0)
|
|
|
|
job.iteration = self.context.current_iteration
|
|
|
|
if job.result.status in self.config.retry_on_status:
|
|
|
|
if job.retry >= self.config.max_retries:
|
|
|
|
self.logger.error('Exceeded maxium number of retries. Abandoning job.')
|
|
|
|
else:
|
|
|
|
self.logger.info('Job status was {}. Retrying...'.format(job.result.status))
|
|
|
|
retry_job = RunnerJob(job.spec, job.retry + 1)
|
|
|
|
self.job_queue.insert(0, retry_job)
|
|
|
|
self.completed_jobs.append(job)
|
2015-03-10 13:09:31 +00:00
|
|
|
self.context.end_job()
|
|
|
|
|
|
|
|
def _finalize_run(self):
|
2015-06-11 18:04:55 +01:00
|
|
|
self.logger.info('Finalizing workloads')
|
|
|
|
for workload_spec in self.context.config.workload_specs:
|
|
|
|
workload_spec.workload.finalize(self.context)
|
|
|
|
|
2015-03-10 13:09:31 +00:00
|
|
|
self.logger.info('Finalizing.')
|
|
|
|
self._send(signal.RUN_FIN)
|
|
|
|
|
|
|
|
with self._handle_errors('Disconnecting from the device'):
|
|
|
|
self.device.disconnect()
|
|
|
|
|
|
|
|
info = self.context.run_info
|
|
|
|
info.end_time = datetime.utcnow()
|
|
|
|
info.duration = info.end_time - info.start_time
|
|
|
|
|
|
|
|
def _process_results(self):
|
|
|
|
self.logger.info('Processing overall results')
|
|
|
|
with self._signal_wrap('OVERALL_RESULTS_PROCESSING'):
|
|
|
|
if instrumentation.check_failures():
|
|
|
|
self.context.run_result.non_iteration_errors = True
|
|
|
|
self.result_manager.process_run_result(self.context.run_result, self.context)
|
|
|
|
|
|
|
|
def _run_workload_iteration(self, workload):
|
|
|
|
self.logger.info('\tSetting up')
|
|
|
|
with self._signal_wrap('WORKLOAD_SETUP'):
|
|
|
|
try:
|
|
|
|
workload.setup(self.context)
|
|
|
|
except:
|
|
|
|
self.logger.info('\tSkipping the rest of the iterations for this spec.')
|
|
|
|
self.current_job.spec.enabled = False
|
|
|
|
raise
|
|
|
|
try:
|
|
|
|
|
|
|
|
self.logger.info('\tExecuting')
|
|
|
|
with self._handle_errors('Running workload'):
|
|
|
|
with self._signal_wrap('WORKLOAD_EXECUTION'):
|
|
|
|
workload.run(self.context)
|
|
|
|
|
|
|
|
self.logger.info('\tProcessing result')
|
|
|
|
self._send(signal.BEFORE_WORKLOAD_RESULT_UPDATE)
|
|
|
|
try:
|
|
|
|
if self.current_job.result.status != IterationResult.FAILED:
|
|
|
|
with self._handle_errors('Processing workload result',
|
|
|
|
on_error_status=IterationResult.PARTIAL):
|
|
|
|
workload.update_result(self.context)
|
|
|
|
self._send(signal.SUCCESSFUL_WORKLOAD_RESULT_UPDATE)
|
|
|
|
|
|
|
|
if self.current_job.result.status == IterationResult.RUNNING:
|
|
|
|
self.current_job.result.status = IterationResult.OK
|
|
|
|
finally:
|
|
|
|
self._send(signal.AFTER_WORKLOAD_RESULT_UPDATE)
|
|
|
|
|
|
|
|
finally:
|
|
|
|
self.logger.info('\tTearing down')
|
|
|
|
with self._handle_errors('Tearing down workload',
|
|
|
|
on_error_status=IterationResult.NONCRITICAL):
|
|
|
|
with self._signal_wrap('WORKLOAD_TEARDOWN'):
|
|
|
|
workload.teardown(self.context)
|
|
|
|
self.result_manager.add_result(self.current_job.result, self.context)
|
|
|
|
|
|
|
|
def _flash_device(self, flashing_params):
|
|
|
|
with self._signal_wrap('FLASHING'):
|
|
|
|
self.device.flash(**flashing_params)
|
|
|
|
self.device.connect()
|
|
|
|
|
|
|
|
def _reboot_device(self):
|
|
|
|
with self._signal_wrap('BOOT'):
|
|
|
|
for reboot_attempts in xrange(MAX_REBOOT_ATTEMPTS):
|
|
|
|
if reboot_attempts:
|
|
|
|
self.logger.info('\tRetrying...')
|
|
|
|
with self._handle_errors('Rebooting device'):
|
|
|
|
self.device.boot(**self.current_job.spec.boot_parameters)
|
|
|
|
break
|
|
|
|
else:
|
|
|
|
raise DeviceError('Could not reboot device; max reboot attempts exceeded.')
|
|
|
|
self.device.connect()
|
|
|
|
|
|
|
|
def _send(self, s):
|
|
|
|
signal.send(s, self, self.context)
|
|
|
|
|
|
|
|
def _take_screenshot(self, filename):
|
|
|
|
if self.context.output_directory:
|
|
|
|
filepath = os.path.join(self.context.output_directory, filename)
|
|
|
|
else:
|
|
|
|
filepath = os.path.join(settings.output_directory, filename)
|
|
|
|
self.device.capture_screen(filepath)
|
|
|
|
|
2016-08-02 16:21:47 +01:00
|
|
|
def _take_uiautomator_dump(self, filename):
|
|
|
|
if self.context.output_directory:
|
|
|
|
filepath = os.path.join(self.context.output_directory, filename)
|
|
|
|
else:
|
|
|
|
filepath = os.path.join(settings.output_directory, filename)
|
|
|
|
self.device.capture_view_hierachy(filepath)
|
|
|
|
|
2015-03-10 13:09:31 +00:00
|
|
|
@contextmanager
|
|
|
|
def _handle_errors(self, action, on_error_status=IterationResult.FAILED):
|
|
|
|
try:
|
|
|
|
if action is not None:
|
|
|
|
self.logger.debug(action)
|
|
|
|
yield
|
|
|
|
except (KeyboardInterrupt, DeviceNotRespondingError):
|
|
|
|
raise
|
|
|
|
except (WAError, TimeoutError), we:
|
|
|
|
self.device.ping()
|
|
|
|
if self.current_job:
|
|
|
|
self.current_job.result.status = on_error_status
|
|
|
|
self.current_job.result.add_event(str(we))
|
|
|
|
try:
|
|
|
|
self._take_screenshot('error.png')
|
2016-08-02 16:21:47 +01:00
|
|
|
if self.device.platform == 'android':
|
|
|
|
self._take_uiautomator_dump('error.xml')
|
2015-03-10 13:09:31 +00:00
|
|
|
except Exception, e: # pylint: disable=W0703
|
|
|
|
# We're already in error state, so the fact that taking a
|
|
|
|
# screenshot failed is not surprising...
|
|
|
|
pass
|
|
|
|
if action:
|
|
|
|
action = action[0].lower() + action[1:]
|
|
|
|
self.logger.error('Error while {}:\n\t{}'.format(action, we))
|
|
|
|
except Exception, e: # pylint: disable=W0703
|
|
|
|
error_text = '{}("{}")'.format(e.__class__.__name__, e)
|
|
|
|
if self.current_job:
|
|
|
|
self.current_job.result.status = on_error_status
|
|
|
|
self.current_job.result.add_event(error_text)
|
|
|
|
self.logger.error('Error while {}'.format(action))
|
|
|
|
self.logger.error(error_text)
|
|
|
|
if isinstance(e, subprocess.CalledProcessError):
|
|
|
|
self.logger.error('Got:')
|
|
|
|
self.logger.error(e.output)
|
|
|
|
tb = get_traceback()
|
|
|
|
self.logger.error(tb)
|
|
|
|
|
|
|
|
@contextmanager
|
|
|
|
def _signal_wrap(self, signal_name):
|
|
|
|
"""Wraps the suite in before/after signals, ensuring
|
|
|
|
that after signal is always sent."""
|
|
|
|
before_signal = getattr(signal, 'BEFORE_' + signal_name)
|
|
|
|
success_signal = getattr(signal, 'SUCCESSFUL_' + signal_name)
|
|
|
|
after_signal = getattr(signal, 'AFTER_' + signal_name)
|
|
|
|
try:
|
|
|
|
self._send(before_signal)
|
|
|
|
yield
|
|
|
|
self._send(success_signal)
|
|
|
|
finally:
|
|
|
|
self._send(after_signal)
|
|
|
|
|
|
|
|
|
|
|
|
class BySpecRunner(Runner):
|
|
|
|
"""
|
|
|
|
This is that "classic" implementation that executes all iterations of a workload
|
|
|
|
spec before proceeding onto the next spec.
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
def init_queue(self, specs):
|
|
|
|
jobs = [[RunnerJob(s) for _ in xrange(s.number_of_iterations)] for s in specs] # pylint: disable=unused-variable
|
|
|
|
self.job_queue = [j for spec_jobs in jobs for j in spec_jobs]
|
|
|
|
|
|
|
|
|
|
|
|
class BySectionRunner(Runner):
|
|
|
|
"""
|
|
|
|
Runs the first iteration for all benchmarks first, before proceeding to the next iteration,
|
|
|
|
i.e. A1, B1, C1, A2, B2, C2... instead of A1, A1, B1, B2, C1, C2...
|
|
|
|
|
|
|
|
If multiple sections where specified in the agenda, this will run all specs for the first section
|
|
|
|
followed by all specs for the seciod section, etc.
|
|
|
|
|
|
|
|
e.g. given sections X and Y, and global specs A and B, with 2 iterations, this will run
|
|
|
|
|
|
|
|
X.A1, X.B1, Y.A1, Y.B1, X.A2, X.B2, Y.A2, Y.B2
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
def init_queue(self, specs):
|
|
|
|
jobs = [[RunnerJob(s) for _ in xrange(s.number_of_iterations)] for s in specs]
|
|
|
|
self.job_queue = [j for spec_jobs in izip_longest(*jobs) for j in spec_jobs if j]
|
|
|
|
|
|
|
|
|
|
|
|
class ByIterationRunner(Runner):
|
|
|
|
"""
|
|
|
|
Runs the first iteration for all benchmarks first, before proceeding to the next iteration,
|
|
|
|
i.e. A1, B1, C1, A2, B2, C2... instead of A1, A1, B1, B2, C1, C2...
|
|
|
|
|
|
|
|
If multiple sections where specified in the agenda, this will run all sections for the first global
|
|
|
|
spec first, followed by all sections for the second spec, etc.
|
|
|
|
|
|
|
|
e.g. given sections X and Y, and global specs A and B, with 2 iterations, this will run
|
|
|
|
|
|
|
|
X.A1, Y.A1, X.B1, Y.B1, X.A2, Y.A2, X.B2, Y.B2
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
def init_queue(self, specs):
|
|
|
|
sections = OrderedDict()
|
|
|
|
for s in specs:
|
|
|
|
if s.section_id not in sections:
|
|
|
|
sections[s.section_id] = []
|
|
|
|
sections[s.section_id].append(s)
|
|
|
|
specs = [s for section_specs in izip_longest(*sections.values()) for s in section_specs if s]
|
|
|
|
jobs = [[RunnerJob(s) for _ in xrange(s.number_of_iterations)] for s in specs]
|
|
|
|
self.job_queue = [j for spec_jobs in izip_longest(*jobs) for j in spec_jobs if j]
|
|
|
|
|
|
|
|
|
|
|
|
class RandomRunner(Runner):
|
|
|
|
"""
|
|
|
|
This will run specs in a random order.
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
def init_queue(self, specs):
|
|
|
|
jobs = [[RunnerJob(s) for _ in xrange(s.number_of_iterations)] for s in specs] # pylint: disable=unused-variable
|
|
|
|
all_jobs = [j for spec_jobs in jobs for j in spec_jobs]
|
|
|
|
random.shuffle(all_jobs)
|
|
|
|
self.job_queue = all_jobs
|