1
0
mirror of https://github.com/esphome/esphome.git synced 2025-10-27 13:13:50 +00:00
Files
esphome/esphome/components/opt3001/opt3001.cpp
2025-08-27 19:30:33 +10:00

123 lines
4.1 KiB
C++

#include "opt3001.h"
#include "esphome/core/log.h"
namespace esphome {
namespace opt3001 {
static const char *const TAG = "opt3001.sensor";
static const uint8_t OPT3001_REG_RESULT = 0x00;
static const uint8_t OPT3001_REG_CONFIGURATION = 0x01;
// See datasheet for full description of each bit.
static const uint16_t OPT3001_CONFIGURATION_RANGE_FULL = 0b1100000000000000;
static const uint16_t OPT3001_CONFIGURATION_CONVERSION_TIME_800 = 0b100000000000;
static const uint16_t OPT3001_CONFIGURATION_CONVERSION_MODE_MASK = 0b11000000000;
static const uint16_t OPT3001_CONFIGURATION_CONVERSION_MODE_SINGLE_SHOT = 0b01000000000;
static const uint16_t OPT3001_CONFIGURATION_CONVERSION_MODE_SHUTDOWN = 0b00000000000;
// tl;dr: Configure an automatic-ranged, 800ms single shot reading,
// with INT processing disabled
static const uint16_t OPT3001_CONFIGURATION_FULL_RANGE_ONE_SHOT = OPT3001_CONFIGURATION_RANGE_FULL |
OPT3001_CONFIGURATION_CONVERSION_TIME_800 |
OPT3001_CONFIGURATION_CONVERSION_MODE_SINGLE_SHOT;
static const uint16_t OPT3001_CONVERSION_TIME_800 = 825; // give it 25 extra ms; it seems to not be ready quite often
/*
opt3001 properties:
- e (exponent) = high 4 bits of result register
- m (mantissa) = low 12 bits of result register
- formula: (0.01 * 2^e) * m lx
*/
void OPT3001Sensor::read_result_(const std::function<void(float)> &f) {
// ensure the single shot flag is clear, indicating it's done
uint16_t raw_value;
if (this->read(reinterpret_cast<uint8_t *>(&raw_value), 2) != i2c::ERROR_OK) {
ESP_LOGW(TAG, "Reading configuration register failed");
f(NAN);
return;
}
raw_value = i2c::i2ctohs(raw_value);
if ((raw_value & OPT3001_CONFIGURATION_CONVERSION_MODE_MASK) != OPT3001_CONFIGURATION_CONVERSION_MODE_SHUTDOWN) {
// not ready; wait 10ms and try again
ESP_LOGW(TAG, "Data not ready; waiting 10ms");
this->set_timeout("opt3001_wait", 10, [this, f]() { read_result_(f); });
return;
}
if (this->read_register(OPT3001_REG_RESULT, reinterpret_cast<uint8_t *>(&raw_value), 2) != i2c::ERROR_OK) {
ESP_LOGW(TAG, "Reading result register failed");
f(NAN);
return;
}
raw_value = i2c::i2ctohs(raw_value);
uint8_t exponent = raw_value >> 12;
uint16_t mantissa = raw_value & 0b111111111111;
double lx = 0.01 * pow(2.0, double(exponent)) * double(mantissa);
f(float(lx));
}
void OPT3001Sensor::read_lx_(const std::function<void(float)> &f) {
// turn on (after one-shot sensor automatically powers down)
uint16_t start_measurement = i2c::htoi2cs(OPT3001_CONFIGURATION_FULL_RANGE_ONE_SHOT);
if (this->write_register(OPT3001_REG_CONFIGURATION, reinterpret_cast<uint8_t *>(&start_measurement), 2) !=
i2c::ERROR_OK) {
ESP_LOGW(TAG, "Triggering one shot measurement failed");
f(NAN);
return;
}
this->set_timeout("read", OPT3001_CONVERSION_TIME_800, [this, f]() {
if (this->write(&OPT3001_REG_CONFIGURATION, 1) != i2c::ERROR_OK) {
ESP_LOGW(TAG, "Starting configuration register read failed");
f(NAN);
return;
}
this->read_result_(f);
});
}
void OPT3001Sensor::dump_config() {
LOG_SENSOR("", "OPT3001", this);
LOG_I2C_DEVICE(this);
if (this->is_failed()) {
ESP_LOGE(TAG, ESP_LOG_MSG_COMM_FAIL);
}
LOG_UPDATE_INTERVAL(this);
}
void OPT3001Sensor::update() {
// Set a flag and skip just in case the sensor isn't responding,
// and we just keep waiting for it in read_result_.
// This way we don't end up with potentially boundless "threads"
// using up memory and eventually crashing the device
if (this->updating_) {
return;
}
this->updating_ = true;
this->read_lx_([this](float val) {
this->updating_ = false;
if (std::isnan(val)) {
this->status_set_warning();
this->publish_state(NAN);
return;
}
ESP_LOGD(TAG, "'%s': Illuminance=%.1flx", this->get_name().c_str(), val);
this->status_clear_warning();
this->publish_state(val);
});
}
float OPT3001Sensor::get_setup_priority() const { return setup_priority::DATA; }
} // namespace opt3001
} // namespace esphome