1
0
mirror of https://github.com/esphome/esphome.git synced 2025-09-04 12:22:20 +01:00
Files
esphome/esphome/core/scheduler.h

212 lines
8.0 KiB
C++

#pragma once
#include <vector>
#include <memory>
#include <cstring>
#include <deque>
#include "esphome/core/component.h"
#include "esphome/core/helpers.h"
namespace esphome {
class Component;
class Scheduler {
public:
// Public API - accepts std::string for backward compatibility
void set_timeout(Component *component, const std::string &name, uint32_t timeout, std::function<void()> func);
/** Set a timeout with a const char* name.
*
* IMPORTANT: The provided name pointer must remain valid for the lifetime of the scheduler item.
* This means the name should be:
* - A string literal (e.g., "update")
* - A static const char* variable
* - A pointer with lifetime >= the scheduled task
*
* For dynamic strings, use the std::string overload instead.
*/
void set_timeout(Component *component, const char *name, uint32_t timeout, std::function<void()> func);
bool cancel_timeout(Component *component, const std::string &name);
bool cancel_timeout(Component *component, const char *name);
void set_interval(Component *component, const std::string &name, uint32_t interval, std::function<void()> func);
/** Set an interval with a const char* name.
*
* IMPORTANT: The provided name pointer must remain valid for the lifetime of the scheduler item.
* This means the name should be:
* - A string literal (e.g., "update")
* - A static const char* variable
* - A pointer with lifetime >= the scheduled task
*
* For dynamic strings, use the std::string overload instead.
*/
void set_interval(Component *component, const char *name, uint32_t interval, std::function<void()> func);
bool cancel_interval(Component *component, const std::string &name);
bool cancel_interval(Component *component, const char *name);
void set_retry(Component *component, const std::string &name, uint32_t initial_wait_time, uint8_t max_attempts,
std::function<RetryResult(uint8_t)> func, float backoff_increase_factor = 1.0f);
bool cancel_retry(Component *component, const std::string &name);
optional<uint32_t> next_schedule_in();
void call();
void process_to_add();
protected:
struct SchedulerItem {
// Ordered by size to minimize padding
Component *component;
uint32_t interval;
// 64-bit time to handle millis() rollover. The scheduler combines the 32-bit millis()
// with a 16-bit rollover counter to create a 64-bit time that won't roll over for
// billions of years. This ensures correct scheduling even when devices run for months.
uint64_t next_execution_;
// Optimized name storage using tagged union
union {
const char *static_name; // For string literals (no allocation)
char *dynamic_name; // For allocated strings
} name_;
std::function<void()> callback;
// Bit-packed fields to minimize padding
enum Type : uint8_t { TIMEOUT, INTERVAL } type : 1;
bool remove : 1;
bool name_is_dynamic : 1; // True if name was dynamically allocated (needs delete[])
// 5 bits padding
// Constructor
SchedulerItem()
: component(nullptr), interval(0), next_execution_(0), type(TIMEOUT), remove(false), name_is_dynamic(false) {
name_.static_name = nullptr;
}
// Destructor to clean up dynamic names
~SchedulerItem() {
if (name_is_dynamic) {
delete[] name_.dynamic_name;
}
}
// Delete copy operations to prevent accidental copies
SchedulerItem(const SchedulerItem &) = delete;
SchedulerItem &operator=(const SchedulerItem &) = delete;
// Delete move operations: SchedulerItem objects are only managed via unique_ptr, never moved directly
SchedulerItem(SchedulerItem &&) = delete;
SchedulerItem &operator=(SchedulerItem &&) = delete;
// Helper to get the name regardless of storage type
const char *get_name() const { return name_is_dynamic ? name_.dynamic_name : name_.static_name; }
// Helper to set name with proper ownership
void set_name(const char *name, bool make_copy = false) {
// Clean up old dynamic name if any
if (name_is_dynamic && name_.dynamic_name) {
delete[] name_.dynamic_name;
name_is_dynamic = false;
}
if (!name || !name[0]) {
name_.static_name = nullptr;
} else if (make_copy) {
// Make a copy for dynamic strings
size_t len = strlen(name);
name_.dynamic_name = new char[len + 1];
memcpy(name_.dynamic_name, name, len + 1);
name_is_dynamic = true;
} else {
// Use static string directly
name_.static_name = name;
}
}
static bool cmp(const std::unique_ptr<SchedulerItem> &a, const std::unique_ptr<SchedulerItem> &b);
const char *get_type_str() const { return (type == TIMEOUT) ? "timeout" : "interval"; }
const char *get_source() const { return component ? component->get_component_source() : "unknown"; }
};
// Common implementation for both timeout and interval
void set_timer_common_(Component *component, SchedulerItem::Type type, bool is_static_string, const void *name_ptr,
uint32_t delay, std::function<void()> func);
uint64_t millis_();
void cleanup_();
void pop_raw_();
private:
// Helper to cancel items by name - must be called with lock held
bool cancel_item_locked_(Component *component, const char *name, SchedulerItem::Type type);
// Helper to extract name as const char* from either static string or std::string
inline const char *get_name_cstr_(bool is_static_string, const void *name_ptr) {
return is_static_string ? static_cast<const char *>(name_ptr) : static_cast<const std::string *>(name_ptr)->c_str();
}
// Common implementation for cancel operations
bool cancel_item_(Component *component, bool is_static_string, const void *name_ptr, SchedulerItem::Type type);
// Helper function to check if item matches criteria for cancellation
inline bool HOT matches_item_(const std::unique_ptr<SchedulerItem> &item, Component *component, const char *name_cstr,
SchedulerItem::Type type) {
if (item->component != component || item->type != type || item->remove) {
return false;
}
const char *item_name = item->get_name();
if (item_name == nullptr) {
return false;
}
// Fast path: if pointers are equal
// This is effective because the core ESPHome codebase uses static strings (const char*)
// for component names. The std::string overloads exist only for compatibility with
// external components, but are rarely used in practice.
if (item_name == name_cstr) {
return true;
}
// Slow path: compare string contents
return strcmp(name_cstr, item_name) == 0;
}
// Helper to execute a scheduler item
void execute_item_(SchedulerItem *item);
// Helper to check if item should be skipped
bool should_skip_item_(const SchedulerItem *item) const {
return item->remove || (item->component != nullptr && item->component->is_failed());
}
// Check if the scheduler has no items.
// IMPORTANT: This method should only be called from the main thread (loop task).
// It performs cleanup of removed items and checks if the queue is empty.
// The items_.empty() check at the end is done without a lock for performance,
// which is safe because this is only called from the main thread while other
// threads only add items (never remove them).
bool empty_() {
this->cleanup_();
return this->items_.empty();
}
Mutex lock_;
std::vector<std::unique_ptr<SchedulerItem>> items_;
std::vector<std::unique_ptr<SchedulerItem>> to_add_;
#if !defined(USE_ESP8266) && !defined(USE_RP2040)
// ESP8266 and RP2040 don't need the defer queue because:
// ESP8266: Single-core with no preemptive multitasking
// RP2040: Currently has empty mutex implementation in ESPHome
// Both platforms save 40 bytes of RAM by excluding this
std::deque<std::unique_ptr<SchedulerItem>> defer_queue_; // FIFO queue for defer() calls
#endif
uint32_t last_millis_{0};
uint16_t millis_major_{0};
uint32_t to_remove_{0};
};
} // namespace esphome