1
0
mirror of https://github.com/esphome/esphome.git synced 2025-03-19 00:58:13 +00:00
2024-11-25 09:25:16 +13:00

445 lines
14 KiB
Python

from esphome import config_validation as cv
from esphome.automation import Trigger, validate_automation
from esphome.components.time import RealTimeClock
from esphome.const import (
CONF_ARGS,
CONF_FORMAT,
CONF_GROUP,
CONF_ID,
CONF_ON_VALUE,
CONF_STATE,
CONF_TEXT,
CONF_TIME,
CONF_TRIGGER_ID,
CONF_TYPE,
)
from esphome.core import TimePeriod
from esphome.schema_extractors import SCHEMA_EXTRACT
from . import defines as df, lv_validation as lvalid
from .defines import CONF_TIME_FORMAT, LV_GRAD_DIR
from .helpers import add_lv_use, requires_component, validate_printf
from .lv_validation import lv_color, lv_font, lv_gradient, lv_image
from .lvcode import LvglComponent, lv_event_t_ptr
from .types import (
LVEncoderListener,
LvType,
WidgetType,
lv_group_t,
lv_obj_t,
lv_pseudo_button_t,
lv_style_t,
)
# this will be populated later, in __init__.py to avoid circular imports.
WIDGET_TYPES: dict = {}
# A schema for text properties
TEXT_SCHEMA = cv.Schema(
{
cv.Optional(CONF_TEXT): cv.Any(
cv.All(
cv.Schema(
{
cv.Required(CONF_FORMAT): cv.string,
cv.Optional(CONF_ARGS, default=list): cv.ensure_list(
cv.lambda_
),
},
),
validate_printf,
),
cv.Schema(
{
cv.Required(CONF_TIME_FORMAT): cv.string,
cv.GenerateID(CONF_TIME): cv.templatable(cv.use_id(RealTimeClock)),
}
),
cv.templatable(cv.string),
)
}
)
LIST_ACTION_SCHEMA = cv.ensure_list(
cv.maybe_simple_value(
{
cv.Required(CONF_ID): cv.use_id(lv_pseudo_button_t),
},
key=CONF_ID,
)
)
PRESS_TIME = cv.All(
lvalid.lv_milliseconds, cv.Range(max=TimePeriod(milliseconds=65535))
)
ENCODER_SCHEMA = cv.Schema(
{
cv.GenerateID(): cv.All(
cv.declare_id(LVEncoderListener), requires_component("binary_sensor")
),
cv.Optional(CONF_GROUP): cv.declare_id(lv_group_t),
cv.Optional(df.CONF_INITIAL_FOCUS): cv.use_id(lv_obj_t),
cv.Optional(df.CONF_LONG_PRESS_TIME, default="400ms"): PRESS_TIME,
cv.Optional(df.CONF_LONG_PRESS_REPEAT_TIME, default="100ms"): PRESS_TIME,
}
)
# All LVGL styles and their validators
STYLE_PROPS = {
"align": df.CHILD_ALIGNMENTS.one_of,
"arc_opa": lvalid.opacity,
"arc_color": lvalid.lv_color,
"arc_rounded": lvalid.lv_bool,
"arc_width": lvalid.lv_positive_int,
"anim_time": lvalid.lv_milliseconds,
"bg_color": lvalid.lv_color,
"bg_grad": lv_gradient,
"bg_grad_color": lvalid.lv_color,
"bg_dither_mode": df.LvConstant("LV_DITHER_", "NONE", "ORDERED", "ERR_DIFF").one_of,
"bg_grad_dir": LV_GRAD_DIR.one_of,
"bg_grad_stop": lvalid.stop_value,
"bg_image_opa": lvalid.opacity,
"bg_image_recolor": lvalid.lv_color,
"bg_image_recolor_opa": lvalid.opacity,
"bg_image_src": lvalid.lv_image,
"bg_main_stop": lvalid.stop_value,
"bg_opa": lvalid.opacity,
"border_color": lvalid.lv_color,
"border_opa": lvalid.opacity,
"border_post": lvalid.lv_bool,
"border_side": df.LvConstant(
"LV_BORDER_SIDE_", "NONE", "TOP", "BOTTOM", "LEFT", "RIGHT", "INTERNAL"
).several_of,
"border_width": lvalid.lv_positive_int,
"clip_corner": lvalid.lv_bool,
"color_filter_opa": lvalid.opacity,
"height": lvalid.size,
"image_recolor": lvalid.lv_color,
"image_recolor_opa": lvalid.opacity,
"line_width": cv.positive_int,
"line_dash_width": cv.positive_int,
"line_dash_gap": cv.positive_int,
"line_rounded": lvalid.lv_bool,
"line_color": lvalid.lv_color,
"opa": lvalid.opacity,
"opa_layered": lvalid.opacity,
"outline_color": lvalid.lv_color,
"outline_opa": lvalid.opacity,
"outline_pad": lvalid.pixels,
"outline_width": lvalid.pixels,
"pad_all": lvalid.pixels,
"pad_bottom": lvalid.pixels,
"pad_left": lvalid.pixels,
"pad_right": lvalid.pixels,
"pad_top": lvalid.pixels,
"shadow_color": lvalid.lv_color,
"shadow_ofs_x": lvalid.lv_int,
"shadow_ofs_y": lvalid.lv_int,
"shadow_opa": lvalid.opacity,
"shadow_spread": lvalid.lv_int,
"shadow_width": lvalid.lv_positive_int,
"text_align": df.LvConstant(
"LV_TEXT_ALIGN_", "LEFT", "CENTER", "RIGHT", "AUTO"
).one_of,
"text_color": lvalid.lv_color,
"text_decor": df.LvConstant(
"LV_TEXT_DECOR_", "NONE", "UNDERLINE", "STRIKETHROUGH"
).several_of,
"text_font": lv_font,
"text_letter_space": cv.positive_int,
"text_line_space": cv.positive_int,
"text_opa": lvalid.opacity,
"transform_angle": lvalid.lv_angle,
"transform_height": lvalid.pixels_or_percent,
"transform_pivot_x": lvalid.pixels_or_percent,
"transform_pivot_y": lvalid.pixels_or_percent,
"transform_zoom": lvalid.zoom,
"translate_x": lvalid.pixels_or_percent,
"translate_y": lvalid.pixels_or_percent,
"max_height": lvalid.pixels_or_percent,
"max_width": lvalid.pixels_or_percent,
"min_height": lvalid.pixels_or_percent,
"min_width": lvalid.pixels_or_percent,
"radius": lvalid.lv_fraction,
"width": lvalid.size,
"x": lvalid.pixels_or_percent,
"y": lvalid.pixels_or_percent,
}
STYLE_REMAP = {
"bg_image_opa": "bg_img_opa",
"bg_image_recolor": "bg_img_recolor",
"bg_image_recolor_opa": "bg_img_recolor_opa",
"bg_image_src": "bg_img_src",
"image_recolor": "img_recolor",
"image_recolor_opa": "img_recolor_opa",
}
# Complete object style schema
STYLE_SCHEMA = cv.Schema({cv.Optional(k): v for k, v in STYLE_PROPS.items()}).extend(
{
cv.Optional(df.CONF_STYLES): cv.ensure_list(cv.use_id(lv_style_t)),
cv.Optional(df.CONF_SCROLLBAR_MODE): df.LvConstant(
"LV_SCROLLBAR_MODE_", "OFF", "ON", "ACTIVE", "AUTO"
).one_of,
}
)
# Object states. Top level properties apply to MAIN
STATE_SCHEMA = cv.Schema(
{cv.Optional(state): STYLE_SCHEMA for state in df.STATES}
).extend(STYLE_SCHEMA)
# Setting object states
SET_STATE_SCHEMA = cv.Schema(
{cv.Optional(state): lvalid.lv_bool for state in df.STATES}
)
# Setting object flags
FLAG_SCHEMA = cv.Schema({cv.Optional(flag): lvalid.lv_bool for flag in df.OBJ_FLAGS})
FLAG_LIST = cv.ensure_list(df.LvConstant("LV_OBJ_FLAG_", *df.OBJ_FLAGS).one_of)
def part_schema(widget_type: WidgetType):
"""
Generate a schema for the various parts (e.g. main:, indicator:) of a widget type
:param widget_type: The type of widget to generate for
:return:
"""
parts = widget_type.parts
return cv.Schema({cv.Optional(part): STATE_SCHEMA for part in parts}).extend(
STATE_SCHEMA
)
def automation_schema(typ: LvType):
if typ.has_on_value:
events = df.LV_EVENT_TRIGGERS + (CONF_ON_VALUE,)
else:
events = df.LV_EVENT_TRIGGERS
args = typ.get_arg_type() if isinstance(typ, LvType) else []
args.append(lv_event_t_ptr)
return {
cv.Optional(event): validate_automation(
{
cv.GenerateID(CONF_TRIGGER_ID): cv.declare_id(Trigger.template(*args)),
}
)
for event in events
}
def create_modify_schema(widget_type):
return (
part_schema(widget_type)
.extend(
{
cv.Required(CONF_ID): cv.ensure_list(
cv.maybe_simple_value(
{
cv.Required(CONF_ID): cv.use_id(widget_type),
},
key=CONF_ID,
)
),
cv.Optional(CONF_STATE): SET_STATE_SCHEMA,
}
)
.extend(FLAG_SCHEMA)
.extend(widget_type.modify_schema)
)
def obj_schema(widget_type: WidgetType):
"""
Create a schema for a widget type itself i.e. no allowance for children
:param widget_type:
:return:
"""
return (
part_schema(widget_type)
.extend(FLAG_SCHEMA)
.extend(LAYOUT_SCHEMA)
.extend(ALIGN_TO_SCHEMA)
.extend(automation_schema(widget_type.w_type))
.extend(
cv.Schema(
{
cv.Optional(CONF_STATE): SET_STATE_SCHEMA,
cv.Optional(CONF_GROUP): cv.use_id(lv_group_t),
}
)
)
)
LAYOUT_SCHEMAS = {}
ALIGN_TO_SCHEMA = {
cv.Optional(df.CONF_ALIGN_TO): cv.Schema(
{
cv.Required(CONF_ID): cv.use_id(lv_obj_t),
cv.Required(df.CONF_ALIGN): df.ALIGN_ALIGNMENTS.one_of,
cv.Optional(df.CONF_X, default=0): lvalid.pixels_or_percent,
cv.Optional(df.CONF_Y, default=0): lvalid.pixels_or_percent,
}
)
}
def grid_free_space(value):
value = cv.Upper(value)
if value.startswith("FR(") and value.endswith(")"):
value = value.removesuffix(")").removeprefix("FR(")
return f"LV_GRID_FR({cv.positive_int(value)})"
raise cv.Invalid("must be a size in pixels, CONTENT or FR(nn)")
grid_spec = cv.Any(
lvalid.size, df.LvConstant("LV_GRID_", "CONTENT").one_of, grid_free_space
)
cell_alignments = df.LV_CELL_ALIGNMENTS.one_of
grid_alignments = df.LV_GRID_ALIGNMENTS.one_of
flex_alignments = df.LV_FLEX_ALIGNMENTS.one_of
LAYOUT_SCHEMA = {
cv.Optional(df.CONF_LAYOUT): cv.typed_schema(
{
df.TYPE_GRID: {
cv.Required(df.CONF_GRID_ROWS): [grid_spec],
cv.Required(df.CONF_GRID_COLUMNS): [grid_spec],
cv.Optional(df.CONF_GRID_COLUMN_ALIGN): grid_alignments,
cv.Optional(df.CONF_GRID_ROW_ALIGN): grid_alignments,
cv.Optional(df.CONF_PAD_ROW): lvalid.pixels,
cv.Optional(df.CONF_PAD_COLUMN): lvalid.pixels,
},
df.TYPE_FLEX: {
cv.Optional(
df.CONF_FLEX_FLOW, default="row_wrap"
): df.FLEX_FLOWS.one_of,
cv.Optional(df.CONF_FLEX_ALIGN_MAIN, default="start"): flex_alignments,
cv.Optional(df.CONF_FLEX_ALIGN_CROSS, default="start"): flex_alignments,
cv.Optional(df.CONF_FLEX_ALIGN_TRACK, default="start"): flex_alignments,
cv.Optional(df.CONF_PAD_ROW): lvalid.pixels,
cv.Optional(df.CONF_PAD_COLUMN): lvalid.pixels,
},
},
lower=True,
)
}
GRID_CELL_SCHEMA = {
cv.Required(df.CONF_GRID_CELL_ROW_POS): cv.positive_int,
cv.Required(df.CONF_GRID_CELL_COLUMN_POS): cv.positive_int,
cv.Optional(df.CONF_GRID_CELL_ROW_SPAN, default=1): cv.positive_int,
cv.Optional(df.CONF_GRID_CELL_COLUMN_SPAN, default=1): cv.positive_int,
cv.Optional(df.CONF_GRID_CELL_X_ALIGN): grid_alignments,
cv.Optional(df.CONF_GRID_CELL_Y_ALIGN): grid_alignments,
}
FLEX_OBJ_SCHEMA = {
cv.Optional(df.CONF_FLEX_GROW): cv.int_,
}
DISP_BG_SCHEMA = cv.Schema(
{
cv.Optional(df.CONF_DISP_BG_IMAGE): lv_image,
cv.Optional(df.CONF_DISP_BG_COLOR): lv_color,
}
)
# A style schema that can include text
STYLED_TEXT_SCHEMA = cv.maybe_simple_value(
STYLE_SCHEMA.extend(TEXT_SCHEMA), key=CONF_TEXT
)
# For use by platform components
LVGL_SCHEMA = cv.Schema(
{
cv.GenerateID(df.CONF_LVGL_ID): cv.use_id(LvglComponent),
}
)
ALL_STYLES = {
**STYLE_PROPS,
**GRID_CELL_SCHEMA,
**FLEX_OBJ_SCHEMA,
cv.Optional(df.CONF_PAD_ROW): lvalid.pixels,
cv.Optional(df.CONF_PAD_COLUMN): lvalid.pixels,
}
def container_validator(schema, widget_type: WidgetType):
"""
Create a validator for a container given the widget type
:param schema: Base schema to extend
:param widget_type:
:return:
"""
def validator(value):
result = schema
if w_sch := widget_type.schema:
result = result.extend(w_sch)
ltype = df.TYPE_NONE
if value and (layout := value.get(df.CONF_LAYOUT)):
if not isinstance(layout, dict):
raise cv.Invalid("Layout value must be a dict")
ltype = layout.get(CONF_TYPE)
if not ltype:
raise (cv.Invalid("Layout schema requires type:"))
add_lv_use(ltype)
if value == SCHEMA_EXTRACT:
return result
result = result.extend(
LAYOUT_SCHEMAS.get(ltype.lower(), LAYOUT_SCHEMAS[df.TYPE_NONE])
)
return result(value)
return validator
def container_schema(widget_type: WidgetType, extras=None):
"""
Create a schema for a container widget of a given type. All obj properties are available, plus
the extras passed in, plus any defined for the specific widget being specified.
:param widget_type: The widget type, e.g. "img"
:param extras: Additional options to be made available, e.g. layout properties for children
:return: The schema for this type of widget.
"""
schema = obj_schema(widget_type).extend(
{cv.GenerateID(): cv.declare_id(widget_type.w_type)}
)
if extras:
schema = schema.extend(extras)
# Delayed evaluation for recursion
return container_validator(schema, widget_type)
def widget_schema(widget_type: WidgetType, extras=None):
"""
Create a schema for a given widget type
:param widget_type: The name of the widget
:param extras:
:return:
"""
validator = container_schema(widget_type, extras=extras)
if required := widget_type.required_component:
validator = cv.All(validator, requires_component(required))
return cv.Exclusive(widget_type.name, df.CONF_WIDGETS), validator
# All widget schemas must be defined before this is called.
def any_widget_schema(extras=None):
"""
Generate schemas for all possible LVGL widgets. This is what implements the ability to have a list of any kind of
widget under the widgets: key.
:param extras: Additional schema to be applied to each generated one
:return:
"""
return cv.Any(dict(widget_schema(wt, extras) for wt in WIDGET_TYPES.values()))