1
0
mirror of https://github.com/esphome/esphome.git synced 2025-03-29 05:58:19 +00:00
Flaviu Tamas e66047e072
Add BMI160 support (#5143)
* Add BMI160 support

* BMI160: use set_timeout for delay

* Add support for old compilers

Fix "warning: missing terminating ' character"

* Increase power-on delay to be more conservative

* Add helper for reading little-endian data over i2c

* Replace configuration names with globals

Note: for testing with external components, you will need to comment out the import & define your own CONF_GYROSCOPE_X, etc, in this file

* Improve icons

* Fix tests & lint
2023-09-09 21:25:09 -05:00

271 lines
8.9 KiB
C++

#include "bmi160.h"
#include "esphome/core/hal.h"
#include "esphome/core/log.h"
namespace esphome {
namespace bmi160 {
static const char *const TAG = "bmi160";
const uint8_t BMI160_REGISTER_CHIPID = 0x00;
const uint8_t BMI160_REGISTER_CMD = 0x7E;
enum class Cmd : uint8_t {
START_FOC = 0x03,
ACCL_SET_PMU_MODE = 0b00010000, // last 2 bits are mode
GYRO_SET_PMU_MODE = 0b00010100, // last 2 bits are mode
MAG_SET_PMU_MODE = 0b00011000, // last 2 bits are mode
PROG_NVM = 0xA0,
FIFO_FLUSH = 0xB0,
INT_RESET = 0xB1,
SOFT_RESET = 0xB6,
STEP_CNT_CLR = 0xB2,
};
enum class GyroPmuMode : uint8_t {
SUSPEND = 0b00,
NORMAL = 0b01,
LOW_POWER = 0b10,
};
enum class AcclPmuMode : uint8_t {
SUSPEND = 0b00,
NORMAL = 0b01,
FAST_STARTUP = 0b11,
};
enum class MagPmuMode : uint8_t {
SUSPEND = 0b00,
NORMAL = 0b01,
LOW_POWER = 0b10,
};
const uint8_t BMI160_REGISTER_ACCEL_CONFIG = 0x40;
enum class AcclFilterMode : uint8_t {
POWER_SAVING = 0b00000000,
PERF = 0b10000000,
};
enum class AcclBandwidth : uint8_t {
OSR4_AVG1 = 0b00000000,
OSR2_AVG2 = 0b00010000,
NORMAL_AVG4 = 0b00100000,
RES_AVG8 = 0b00110000,
RES_AVG16 = 0b01000000,
RES_AVG32 = 0b01010000,
RES_AVG64 = 0b01100000,
RES_AVG128 = 0b01110000,
};
enum class AccelOutputDataRate : uint8_t {
HZ_25_32 = 0b0001, // 25/32 Hz
HZ_25_16 = 0b0010, // 25/16 Hz
HZ_25_8 = 0b0011, // 25/8 Hz
HZ_25_4 = 0b0100, // 25/4 Hz
HZ_25_2 = 0b0101, // 25/2 Hz
HZ_25 = 0b0110, // 25 Hz
HZ_50 = 0b0111, // 50 Hz
HZ_100 = 0b1000, // 100 Hz
HZ_200 = 0b1001, // 200 Hz
HZ_400 = 0b1010, // 400 Hz
HZ_800 = 0b1011, // 800 Hz
HZ_1600 = 0b1100, // 1600 Hz
};
const uint8_t BMI160_REGISTER_ACCEL_RANGE = 0x41;
enum class AccelRange : uint8_t {
RANGE_2G = 0b0011,
RANGE_4G = 0b0101,
RANGE_8G = 0b1000,
RANGE_16G = 0b1100,
};
const uint8_t BMI160_REGISTER_GYRO_CONFIG = 0x42;
enum class GyroBandwidth : uint8_t {
OSR4 = 0x00,
OSR2 = 0x10,
NORMAL = 0x20,
};
enum class GyroOuputDataRate : uint8_t {
HZ_25 = 0x06,
HZ_50 = 0x07,
HZ_100 = 0x08,
HZ_200 = 0x09,
HZ_400 = 0x0A,
HZ_800 = 0x0B,
HZ_1600 = 0x0C,
HZ_3200 = 0x0D,
};
const uint8_t BMI160_REGISTER_GYRO_RANGE = 0x43;
enum class GyroRange : uint8_t {
RANGE_2000_DPS = 0x0, // ±2000 °/s
RANGE_1000_DPS = 0x1,
RANGE_500_DPS = 0x2,
RANGE_250_DPS = 0x3,
RANGE_125_DPS = 0x4,
};
const uint8_t BMI160_REGISTER_DATA_GYRO_X_LSB = 0x0C;
const uint8_t BMI160_REGISTER_DATA_GYRO_X_MSB = 0x0D;
const uint8_t BMI160_REGISTER_DATA_GYRO_Y_LSB = 0x0E;
const uint8_t BMI160_REGISTER_DATA_GYRO_Y_MSB = 0x0F;
const uint8_t BMI160_REGISTER_DATA_GYRO_Z_LSB = 0x10;
const uint8_t BMI160_REGISTER_DATA_GYRO_Z_MSB = 0x11;
const uint8_t BMI160_REGISTER_DATA_ACCEL_X_LSB = 0x12;
const uint8_t BMI160_REGISTER_DATA_ACCEL_X_MSB = 0x13;
const uint8_t BMI160_REGISTER_DATA_ACCEL_Y_LSB = 0x14;
const uint8_t BMI160_REGISTER_DATA_ACCEL_Y_MSB = 0x15;
const uint8_t BMI160_REGISTER_DATA_ACCEL_Z_LSB = 0x16;
const uint8_t BMI160_REGISTER_DATA_ACCEL_Z_MSB = 0x17;
const uint8_t BMI160_REGISTER_DATA_TEMP_LSB = 0x20;
const uint8_t BMI160_REGISTER_DATA_TEMP_MSB = 0x21;
const float GRAVITY_EARTH = 9.80665f;
void BMI160Component::internal_setup_(int stage) {
switch (stage) {
case 0:
ESP_LOGCONFIG(TAG, "Setting up BMI160...");
uint8_t chipid;
if (!this->read_byte(BMI160_REGISTER_CHIPID, &chipid) || (chipid != 0b11010001)) {
this->mark_failed();
return;
}
ESP_LOGV(TAG, " Bringing accelerometer out of sleep...");
if (!this->write_byte(BMI160_REGISTER_CMD, (uint8_t) Cmd::ACCL_SET_PMU_MODE | (uint8_t) AcclPmuMode::NORMAL)) {
this->mark_failed();
return;
}
ESP_LOGV(TAG, " Waiting for accelerometer to wake up...");
// need to wait (max delay in datasheet) because we can't send commands while another is in progress
// min 5ms, 10ms
this->set_timeout(10, [this]() { this->internal_setup_(1); });
break;
case 1:
ESP_LOGV(TAG, " Bringing gyroscope out of sleep...");
if (!this->write_byte(BMI160_REGISTER_CMD, (uint8_t) Cmd::GYRO_SET_PMU_MODE | (uint8_t) GyroPmuMode::NORMAL)) {
this->mark_failed();
return;
}
ESP_LOGV(TAG, " Waiting for gyroscope to wake up...");
// wait between 51 & 81ms, doing 100 to be safe
this->set_timeout(10, [this]() { this->internal_setup_(2); });
break;
case 2:
ESP_LOGV(TAG, " Setting up Gyro Config...");
uint8_t gyro_config = (uint8_t) GyroBandwidth::OSR4 | (uint8_t) GyroOuputDataRate::HZ_25;
ESP_LOGV(TAG, " Output gyro_config: 0b" BYTE_TO_BINARY_PATTERN, BYTE_TO_BINARY(gyro_config));
if (!this->write_byte(BMI160_REGISTER_GYRO_CONFIG, gyro_config)) {
this->mark_failed();
return;
}
ESP_LOGV(TAG, " Setting up Gyro Range...");
uint8_t gyro_range = (uint8_t) GyroRange::RANGE_2000_DPS;
ESP_LOGV(TAG, " Output gyro_range: 0b" BYTE_TO_BINARY_PATTERN, BYTE_TO_BINARY(gyro_range));
if (!this->write_byte(BMI160_REGISTER_GYRO_RANGE, gyro_range)) {
this->mark_failed();
return;
}
ESP_LOGV(TAG, " Setting up Accel Config...");
uint8_t accel_config =
(uint8_t) AcclFilterMode::PERF | (uint8_t) AcclBandwidth::RES_AVG16 | (uint8_t) AccelOutputDataRate::HZ_25;
ESP_LOGV(TAG, " Output accel_config: 0b" BYTE_TO_BINARY_PATTERN, BYTE_TO_BINARY(accel_config));
if (!this->write_byte(BMI160_REGISTER_ACCEL_CONFIG, accel_config)) {
this->mark_failed();
return;
}
ESP_LOGV(TAG, " Setting up Accel Range...");
uint8_t accel_range = (uint8_t) AccelRange::RANGE_16G;
ESP_LOGV(TAG, " Output accel_range: 0b" BYTE_TO_BINARY_PATTERN, BYTE_TO_BINARY(accel_range));
if (!this->write_byte(BMI160_REGISTER_ACCEL_RANGE, accel_range)) {
this->mark_failed();
return;
}
this->setup_complete_ = true;
}
}
void BMI160Component::setup() { this->internal_setup_(0); }
void BMI160Component::dump_config() {
ESP_LOGCONFIG(TAG, "BMI160:");
LOG_I2C_DEVICE(this);
if (this->is_failed()) {
ESP_LOGE(TAG, "Communication with BMI160 failed!");
}
LOG_UPDATE_INTERVAL(this);
LOG_SENSOR(" ", "Acceleration X", this->accel_x_sensor_);
LOG_SENSOR(" ", "Acceleration Y", this->accel_y_sensor_);
LOG_SENSOR(" ", "Acceleration Z", this->accel_z_sensor_);
LOG_SENSOR(" ", "Gyro X", this->gyro_x_sensor_);
LOG_SENSOR(" ", "Gyro Y", this->gyro_y_sensor_);
LOG_SENSOR(" ", "Gyro Z", this->gyro_z_sensor_);
LOG_SENSOR(" ", "Temperature", this->temperature_sensor_);
}
i2c::ErrorCode BMI160Component::read_le_int16_(uint8_t reg, int16_t *value, uint8_t len) {
uint8_t raw_data[len * 2];
// read using read_register because we have little-endian data, and read_bytes_16 will swap it
i2c::ErrorCode err = this->read_register(reg, raw_data, len * 2, true);
if (err != i2c::ERROR_OK) {
return err;
}
for (int i = 0; i < len; i++) {
value[i] = (int16_t) ((uint16_t) raw_data[i * 2] | ((uint16_t) raw_data[i * 2 + 1] << 8));
}
return err;
}
void BMI160Component::update() {
if (!this->setup_complete_) {
return;
}
ESP_LOGV(TAG, " Updating BMI160...");
int16_t data[6];
if (this->read_le_int16_(BMI160_REGISTER_DATA_GYRO_X_LSB, data, 6) != i2c::ERROR_OK) {
this->status_set_warning();
return;
}
float gyro_x = (float) data[0] / (float) INT16_MAX * 2000.f;
float gyro_y = (float) data[1] / (float) INT16_MAX * 2000.f;
float gyro_z = (float) data[2] / (float) INT16_MAX * 2000.f;
float accel_x = (float) data[3] / (float) INT16_MAX * 16 * GRAVITY_EARTH;
float accel_y = (float) data[4] / (float) INT16_MAX * 16 * GRAVITY_EARTH;
float accel_z = (float) data[5] / (float) INT16_MAX * 16 * GRAVITY_EARTH;
int16_t raw_temperature;
if (this->read_le_int16_(BMI160_REGISTER_DATA_TEMP_LSB, &raw_temperature, 1) != i2c::ERROR_OK) {
this->status_set_warning();
return;
}
float temperature = (float) raw_temperature / (float) INT16_MAX * 64.5f + 23.f;
ESP_LOGD(TAG,
"Got accel={x=%.3f m/s², y=%.3f m/s², z=%.3f m/s²}, "
"gyro={x=%.3f °/s, y=%.3f °/s, z=%.3f °/s}, temp=%.3f°C",
accel_x, accel_y, accel_z, gyro_x, gyro_y, gyro_z, temperature);
if (this->accel_x_sensor_ != nullptr)
this->accel_x_sensor_->publish_state(accel_x);
if (this->accel_y_sensor_ != nullptr)
this->accel_y_sensor_->publish_state(accel_y);
if (this->accel_z_sensor_ != nullptr)
this->accel_z_sensor_->publish_state(accel_z);
if (this->temperature_sensor_ != nullptr)
this->temperature_sensor_->publish_state(temperature);
if (this->gyro_x_sensor_ != nullptr)
this->gyro_x_sensor_->publish_state(gyro_x);
if (this->gyro_y_sensor_ != nullptr)
this->gyro_y_sensor_->publish_state(gyro_y);
if (this->gyro_z_sensor_ != nullptr)
this->gyro_z_sensor_->publish_state(gyro_z);
this->status_clear_warning();
}
float BMI160Component::get_setup_priority() const { return setup_priority::DATA; }
} // namespace bmi160
} // namespace esphome