1
0
mirror of https://github.com/esphome/esphome.git synced 2025-04-08 20:00:27 +01:00
esphome/esphome/components/i2s_audio/speaker/i2s_audio_speaker.cpp

523 lines
20 KiB
C++

#include "i2s_audio_speaker.h"
#ifdef USE_ESP32
#include <driver/i2s.h>
#include "esphome/components/audio/audio.h"
#include "esphome/core/application.h"
#include "esphome/core/hal.h"
#include "esphome/core/log.h"
namespace esphome {
namespace i2s_audio {
static const uint8_t DMA_BUFFER_DURATION_MS = 15;
static const size_t DMA_BUFFERS_COUNT = 4;
static const size_t TASK_DELAY_MS = DMA_BUFFER_DURATION_MS * DMA_BUFFERS_COUNT / 2;
static const size_t TASK_STACK_SIZE = 4096;
static const ssize_t TASK_PRIORITY = 23;
static const size_t I2S_EVENT_QUEUE_COUNT = DMA_BUFFERS_COUNT + 1;
static const char *const TAG = "i2s_audio.speaker";
enum SpeakerEventGroupBits : uint32_t {
COMMAND_START = (1 << 0), // starts the speaker task
COMMAND_STOP = (1 << 1), // stops the speaker task
COMMAND_STOP_GRACEFULLY = (1 << 2), // Stops the speaker task once all data has been written
STATE_STARTING = (1 << 10),
STATE_RUNNING = (1 << 11),
STATE_STOPPING = (1 << 12),
STATE_STOPPED = (1 << 13),
ERR_INVALID_FORMAT = (1 << 14),
ERR_TASK_FAILED_TO_START = (1 << 15),
ERR_ESP_INVALID_STATE = (1 << 16),
ERR_ESP_INVALID_ARG = (1 << 17),
ERR_ESP_INVALID_SIZE = (1 << 18),
ERR_ESP_NO_MEM = (1 << 19),
ERR_ESP_FAIL = (1 << 20),
ALL_ERR_ESP_BITS = ERR_ESP_INVALID_STATE | ERR_ESP_INVALID_ARG | ERR_ESP_INVALID_SIZE | ERR_ESP_NO_MEM | ERR_ESP_FAIL,
ALL_BITS = 0x00FFFFFF, // All valid FreeRTOS event group bits
};
// Translates a SpeakerEventGroupBits ERR_ESP bit to the coressponding esp_err_t
static esp_err_t err_bit_to_esp_err(uint32_t bit) {
switch (bit) {
case SpeakerEventGroupBits::ERR_ESP_INVALID_STATE:
return ESP_ERR_INVALID_STATE;
case SpeakerEventGroupBits::ERR_ESP_INVALID_ARG:
return ESP_ERR_INVALID_ARG;
case SpeakerEventGroupBits::ERR_ESP_INVALID_SIZE:
return ESP_ERR_INVALID_SIZE;
case SpeakerEventGroupBits::ERR_ESP_NO_MEM:
return ESP_ERR_NO_MEM;
default:
return ESP_FAIL;
}
}
/// @brief Multiplies the input array of Q15 numbers by a Q15 constant factor
///
/// Based on `dsps_mulc_s16_ansi` from the esp-dsp library:
/// https://github.com/espressif/esp-dsp/blob/master/modules/math/mulc/fixed/dsps_mulc_s16_ansi.c
/// (accessed on 2024-09-30).
/// @param input Array of Q15 numbers
/// @param output Array of Q15 numbers
/// @param len Length of array
/// @param c Q15 constant factor
static void q15_multiplication(const int16_t *input, int16_t *output, size_t len, int16_t c) {
for (int i = 0; i < len; i++) {
int32_t acc = (int32_t) input[i] * (int32_t) c;
output[i] = (int16_t) (acc >> 15);
}
}
// Lists the Q15 fixed point scaling factor for volume reduction.
// Has 100 values representing silence and a reduction [49, 48.5, ... 0.5, 0] dB.
// dB to PCM scaling factor formula: floating_point_scale_factor = 2^(-db/6.014)
// float to Q15 fixed point formula: q15_scale_factor = floating_point_scale_factor * 2^(15)
static const std::vector<int16_t> Q15_VOLUME_SCALING_FACTORS = {
0, 116, 122, 130, 137, 146, 154, 163, 173, 183, 194, 206, 218, 231, 244,
259, 274, 291, 308, 326, 345, 366, 388, 411, 435, 461, 488, 517, 548, 580,
615, 651, 690, 731, 774, 820, 868, 920, 974, 1032, 1094, 1158, 1227, 1300, 1377,
1459, 1545, 1637, 1734, 1837, 1946, 2061, 2184, 2313, 2450, 2596, 2750, 2913, 3085, 3269,
3462, 3668, 3885, 4116, 4360, 4619, 4893, 5183, 5490, 5816, 6161, 6527, 6914, 7324, 7758,
8218, 8706, 9222, 9770, 10349, 10963, 11613, 12302, 13032, 13805, 14624, 15491, 16410, 17384, 18415,
19508, 20665, 21891, 23189, 24565, 26022, 27566, 29201, 30933, 32767};
void I2SAudioSpeaker::setup() {
ESP_LOGCONFIG(TAG, "Setting up I2S Audio Speaker...");
this->event_group_ = xEventGroupCreate();
if (this->event_group_ == nullptr) {
ESP_LOGE(TAG, "Failed to create event group");
this->mark_failed();
return;
}
}
void I2SAudioSpeaker::loop() {
uint32_t event_group_bits = xEventGroupGetBits(this->event_group_);
if (event_group_bits & SpeakerEventGroupBits::STATE_STARTING) {
ESP_LOGD(TAG, "Starting Speaker");
this->state_ = speaker::STATE_STARTING;
xEventGroupClearBits(this->event_group_, SpeakerEventGroupBits::STATE_STARTING);
}
if (event_group_bits & SpeakerEventGroupBits::STATE_RUNNING) {
ESP_LOGD(TAG, "Started Speaker");
this->state_ = speaker::STATE_RUNNING;
xEventGroupClearBits(this->event_group_, SpeakerEventGroupBits::STATE_RUNNING);
this->status_clear_warning();
this->status_clear_error();
}
if (event_group_bits & SpeakerEventGroupBits::STATE_STOPPING) {
ESP_LOGD(TAG, "Stopping Speaker");
this->state_ = speaker::STATE_STOPPING;
xEventGroupClearBits(this->event_group_, SpeakerEventGroupBits::STATE_STOPPING);
}
if (event_group_bits & SpeakerEventGroupBits::STATE_STOPPED) {
if (!this->task_created_) {
ESP_LOGD(TAG, "Stopped Speaker");
this->state_ = speaker::STATE_STOPPED;
xEventGroupClearBits(this->event_group_, SpeakerEventGroupBits::ALL_BITS);
this->speaker_task_handle_ = nullptr;
}
}
if (event_group_bits & SpeakerEventGroupBits::ERR_TASK_FAILED_TO_START) {
this->status_set_error("Failed to start speaker task");
xEventGroupClearBits(this->event_group_, SpeakerEventGroupBits::ERR_TASK_FAILED_TO_START);
}
if (event_group_bits & SpeakerEventGroupBits::ERR_INVALID_FORMAT) {
this->status_set_error("Failed to adjust I2S bus to match the incoming audio");
ESP_LOGE(TAG,
"Incompatible audio format: sample rate = %" PRIu32 ", channels = %" PRIu8 ", bits per sample = %" PRIu8,
this->audio_stream_info_.sample_rate, this->audio_stream_info_.channels,
this->audio_stream_info_.bits_per_sample);
}
if (event_group_bits & SpeakerEventGroupBits::ALL_ERR_ESP_BITS) {
uint32_t error_bits = event_group_bits & SpeakerEventGroupBits::ALL_ERR_ESP_BITS;
ESP_LOGW(TAG, "Error writing to I2S: %s", esp_err_to_name(err_bit_to_esp_err(error_bits)));
this->status_set_warning();
}
}
void I2SAudioSpeaker::set_volume(float volume) {
this->volume_ = volume;
#ifdef USE_AUDIO_DAC
if (this->audio_dac_ != nullptr) {
if (volume > 0.0) {
this->audio_dac_->set_mute_off();
}
this->audio_dac_->set_volume(volume);
} else
#endif
{
// Fallback to software volume control by using a Q15 fixed point scaling factor
ssize_t decibel_index = remap<ssize_t, float>(volume, 0.0f, 1.0f, 0, Q15_VOLUME_SCALING_FACTORS.size() - 1);
this->q15_volume_factor_ = Q15_VOLUME_SCALING_FACTORS[decibel_index];
}
}
void I2SAudioSpeaker::set_mute_state(bool mute_state) {
this->mute_state_ = mute_state;
#ifdef USE_AUDIO_DAC
if (this->audio_dac_) {
if (mute_state) {
this->audio_dac_->set_mute_on();
} else {
this->audio_dac_->set_mute_off();
}
} else
#endif
{
if (mute_state) {
// Fallback to software volume control and scale by 0
this->q15_volume_factor_ = 0;
} else {
// Revert to previous volume when unmuting
this->set_volume(this->volume_);
}
}
}
size_t I2SAudioSpeaker::play(const uint8_t *data, size_t length, TickType_t ticks_to_wait) {
if (this->is_failed()) {
ESP_LOGE(TAG, "Cannot play audio, speaker failed to setup");
return 0;
}
if (this->state_ != speaker::STATE_RUNNING && this->state_ != speaker::STATE_STARTING) {
this->start();
}
size_t bytes_written = 0;
if ((this->state_ == speaker::STATE_RUNNING) && (this->audio_ring_buffer_.use_count() == 1)) {
// Only one owner of the ring buffer (the speaker task), so the ring buffer is allocated and no other components are
// attempting to write to it.
// Temporarily share ownership of the ring buffer so it won't be deallocated while writing
std::shared_ptr<RingBuffer> temp_ring_buffer = this->audio_ring_buffer_;
bytes_written = temp_ring_buffer->write_without_replacement((void *) data, length, ticks_to_wait);
}
return bytes_written;
}
bool I2SAudioSpeaker::has_buffered_data() const {
if (this->audio_ring_buffer_ != nullptr) {
return this->audio_ring_buffer_->available() > 0;
}
return false;
}
void I2SAudioSpeaker::speaker_task(void *params) {
I2SAudioSpeaker *this_speaker = (I2SAudioSpeaker *) params;
uint32_t event_group_bits =
xEventGroupWaitBits(this_speaker->event_group_,
SpeakerEventGroupBits::COMMAND_START | SpeakerEventGroupBits::COMMAND_STOP |
SpeakerEventGroupBits::COMMAND_STOP_GRACEFULLY, // Bit message to read
pdTRUE, // Clear the bits on exit
pdFALSE, // Don't wait for all the bits,
portMAX_DELAY); // Block indefinitely until a bit is set
if (event_group_bits & (SpeakerEventGroupBits::COMMAND_STOP | SpeakerEventGroupBits::COMMAND_STOP_GRACEFULLY)) {
// Received a stop signal before the task was requested to start
this_speaker->delete_task_(0);
}
xEventGroupSetBits(this_speaker->event_group_, SpeakerEventGroupBits::STATE_STARTING);
audio::AudioStreamInfo audio_stream_info = this_speaker->audio_stream_info_;
const ssize_t bytes_per_sample = audio_stream_info.get_bytes_per_sample();
const uint8_t number_of_channels = audio_stream_info.channels;
const size_t dma_buffers_size = DMA_BUFFERS_COUNT * DMA_BUFFER_DURATION_MS * this_speaker->sample_rate_ / 1000 *
bytes_per_sample * number_of_channels;
const size_t ring_buffer_size =
this_speaker->buffer_duration_ms_ * this_speaker->sample_rate_ / 1000 * bytes_per_sample * number_of_channels;
if (this_speaker->send_esp_err_to_event_group_(this_speaker->allocate_buffers_(dma_buffers_size, ring_buffer_size))) {
// Failed to allocate buffers
xEventGroupSetBits(this_speaker->event_group_, SpeakerEventGroupBits::ERR_ESP_NO_MEM);
this_speaker->delete_task_(dma_buffers_size);
}
if (this_speaker->send_esp_err_to_event_group_(this_speaker->start_i2s_driver_())) {
// Failed to start I2S driver
this_speaker->delete_task_(dma_buffers_size);
}
if (!this_speaker->send_esp_err_to_event_group_(this_speaker->reconfigure_i2s_stream_info_(audio_stream_info))) {
// Successfully set the I2S stream info, ready to write audio data to the I2S port
xEventGroupSetBits(this_speaker->event_group_, SpeakerEventGroupBits::STATE_RUNNING);
bool stop_gracefully = false;
uint32_t last_data_received_time = millis();
bool tx_dma_underflow = false;
while (!this_speaker->timeout_.has_value() ||
(millis() - last_data_received_time) <= this_speaker->timeout_.value()) {
event_group_bits = xEventGroupGetBits(this_speaker->event_group_);
if (event_group_bits & SpeakerEventGroupBits::COMMAND_STOP) {
break;
}
if (event_group_bits & SpeakerEventGroupBits::COMMAND_STOP_GRACEFULLY) {
stop_gracefully = true;
}
i2s_event_t i2s_event;
while (xQueueReceive(this_speaker->i2s_event_queue_, &i2s_event, 0)) {
if (i2s_event.type == I2S_EVENT_TX_Q_OVF) {
tx_dma_underflow = true;
}
}
size_t bytes_to_read = dma_buffers_size;
size_t bytes_read = this_speaker->audio_ring_buffer_->read((void *) this_speaker->data_buffer_, bytes_to_read,
pdMS_TO_TICKS(TASK_DELAY_MS));
if (bytes_read > 0) {
size_t bytes_written = 0;
if ((audio_stream_info.bits_per_sample == 16) && (this_speaker->q15_volume_factor_ < INT16_MAX)) {
// Scale samples by the volume factor in place
q15_multiplication((int16_t *) this_speaker->data_buffer_, (int16_t *) this_speaker->data_buffer_,
bytes_read / sizeof(int16_t), this_speaker->q15_volume_factor_);
}
if (audio_stream_info.bits_per_sample == (uint8_t) this_speaker->bits_per_sample_) {
i2s_write(this_speaker->parent_->get_port(), this_speaker->data_buffer_, bytes_read, &bytes_written,
portMAX_DELAY);
} else if (audio_stream_info.bits_per_sample < (uint8_t) this_speaker->bits_per_sample_) {
i2s_write_expand(this_speaker->parent_->get_port(), this_speaker->data_buffer_, bytes_read,
audio_stream_info.bits_per_sample, this_speaker->bits_per_sample_, &bytes_written,
portMAX_DELAY);
}
if (bytes_written != bytes_read) {
xEventGroupSetBits(this_speaker->event_group_, SpeakerEventGroupBits::ERR_ESP_INVALID_SIZE);
}
tx_dma_underflow = false;
last_data_received_time = millis();
} else {
// No data received
if (stop_gracefully && tx_dma_underflow) {
break;
}
}
}
} else {
// Couldn't configure the I2S port to be compatible with the incoming audio
xEventGroupSetBits(this_speaker->event_group_, SpeakerEventGroupBits::ERR_INVALID_FORMAT);
}
i2s_zero_dma_buffer(this_speaker->parent_->get_port());
xEventGroupSetBits(this_speaker->event_group_, SpeakerEventGroupBits::STATE_STOPPING);
i2s_driver_uninstall(this_speaker->parent_->get_port());
this_speaker->parent_->unlock();
this_speaker->delete_task_(dma_buffers_size);
}
void I2SAudioSpeaker::start() {
if (!this->is_ready() || this->is_failed() || this->status_has_error())
return;
if ((this->state_ == speaker::STATE_STARTING) || (this->state_ == speaker::STATE_RUNNING))
return;
if (this->speaker_task_handle_ == nullptr) {
xTaskCreate(I2SAudioSpeaker::speaker_task, "speaker_task", TASK_STACK_SIZE, (void *) this, TASK_PRIORITY,
&this->speaker_task_handle_);
}
if (this->speaker_task_handle_ != nullptr) {
xEventGroupSetBits(this->event_group_, SpeakerEventGroupBits::COMMAND_START);
this->task_created_ = true;
} else {
xEventGroupSetBits(this->event_group_, SpeakerEventGroupBits::ERR_TASK_FAILED_TO_START);
}
}
void I2SAudioSpeaker::stop() { this->stop_(false); }
void I2SAudioSpeaker::finish() { this->stop_(true); }
void I2SAudioSpeaker::stop_(bool wait_on_empty) {
if (this->is_failed())
return;
if (this->state_ == speaker::STATE_STOPPED)
return;
if (wait_on_empty) {
xEventGroupSetBits(this->event_group_, SpeakerEventGroupBits::COMMAND_STOP_GRACEFULLY);
} else {
xEventGroupSetBits(this->event_group_, SpeakerEventGroupBits::COMMAND_STOP);
}
}
bool I2SAudioSpeaker::send_esp_err_to_event_group_(esp_err_t err) {
switch (err) {
case ESP_OK:
return false;
case ESP_ERR_INVALID_STATE:
xEventGroupSetBits(this->event_group_, SpeakerEventGroupBits::ERR_ESP_INVALID_STATE);
return true;
case ESP_ERR_INVALID_ARG:
xEventGroupSetBits(this->event_group_, SpeakerEventGroupBits::ERR_ESP_INVALID_ARG);
return true;
case ESP_ERR_INVALID_SIZE:
xEventGroupSetBits(this->event_group_, SpeakerEventGroupBits::ERR_ESP_INVALID_SIZE);
return true;
case ESP_ERR_NO_MEM:
xEventGroupSetBits(this->event_group_, SpeakerEventGroupBits::ERR_ESP_NO_MEM);
return true;
default:
xEventGroupSetBits(this->event_group_, SpeakerEventGroupBits::ERR_ESP_FAIL);
return true;
}
}
esp_err_t I2SAudioSpeaker::allocate_buffers_(size_t data_buffer_size, size_t ring_buffer_size) {
if (this->data_buffer_ == nullptr) {
// Allocate data buffer for temporarily storing audio from the ring buffer before writing to the I2S bus
ExternalRAMAllocator<uint8_t> allocator(ExternalRAMAllocator<uint8_t>::ALLOW_FAILURE);
this->data_buffer_ = allocator.allocate(data_buffer_size);
}
if (this->data_buffer_ == nullptr) {
return ESP_ERR_NO_MEM;
}
if (this->audio_ring_buffer_.use_count() == 0) {
// Allocate ring buffer. Uses a shared_ptr to ensure it isn't improperly deallocated.
this->audio_ring_buffer_ = RingBuffer::create(ring_buffer_size);
}
if (this->audio_ring_buffer_ == nullptr) {
return ESP_ERR_NO_MEM;
}
return ESP_OK;
}
esp_err_t I2SAudioSpeaker::start_i2s_driver_() {
if (!this->parent_->try_lock()) {
return ESP_ERR_INVALID_STATE;
}
int dma_buffer_length = DMA_BUFFER_DURATION_MS * this->sample_rate_ / 1000;
i2s_driver_config_t config = {
.mode = (i2s_mode_t) (this->i2s_mode_ | I2S_MODE_TX),
.sample_rate = this->sample_rate_,
.bits_per_sample = this->bits_per_sample_,
.channel_format = this->channel_,
.communication_format = this->i2s_comm_fmt_,
.intr_alloc_flags = ESP_INTR_FLAG_LEVEL1,
.dma_buf_count = DMA_BUFFERS_COUNT,
.dma_buf_len = dma_buffer_length,
.use_apll = this->use_apll_,
.tx_desc_auto_clear = true,
.fixed_mclk = I2S_PIN_NO_CHANGE,
.mclk_multiple = I2S_MCLK_MULTIPLE_256,
.bits_per_chan = this->bits_per_channel_,
#if SOC_I2S_SUPPORTS_TDM
.chan_mask = (i2s_channel_t) (I2S_TDM_ACTIVE_CH0 | I2S_TDM_ACTIVE_CH1),
.total_chan = 2,
.left_align = false,
.big_edin = false,
.bit_order_msb = false,
.skip_msk = false,
#endif
};
#if SOC_I2S_SUPPORTS_DAC
if (this->internal_dac_mode_ != I2S_DAC_CHANNEL_DISABLE) {
config.mode = (i2s_mode_t) (config.mode | I2S_MODE_DAC_BUILT_IN);
}
#endif
esp_err_t err =
i2s_driver_install(this->parent_->get_port(), &config, I2S_EVENT_QUEUE_COUNT, &this->i2s_event_queue_);
if (err != ESP_OK) {
// Failed to install the driver, so unlock the I2S port
this->parent_->unlock();
return err;
}
#if SOC_I2S_SUPPORTS_DAC
if (this->internal_dac_mode_ == I2S_DAC_CHANNEL_DISABLE) {
#endif
i2s_pin_config_t pin_config = this->parent_->get_pin_config();
pin_config.data_out_num = this->dout_pin_;
err = i2s_set_pin(this->parent_->get_port(), &pin_config);
#if SOC_I2S_SUPPORTS_DAC
} else {
i2s_set_dac_mode(this->internal_dac_mode_);
}
#endif
if (err != ESP_OK) {
// Failed to set the data out pin, so uninstall the driver and unlock the I2S port
i2s_driver_uninstall(this->parent_->get_port());
this->parent_->unlock();
}
return err;
}
esp_err_t I2SAudioSpeaker::reconfigure_i2s_stream_info_(audio::AudioStreamInfo &audio_stream_info) {
if (this->i2s_mode_ & I2S_MODE_MASTER) {
// ESP controls for the the I2S bus, so adjust the sample rate and bits per sample to match the incoming audio
this->sample_rate_ = audio_stream_info.sample_rate;
this->bits_per_sample_ = (i2s_bits_per_sample_t) audio_stream_info.bits_per_sample;
} else if (this->sample_rate_ != audio_stream_info.sample_rate) {
// Can't reconfigure I2S bus, so the sample rate must match the configured value
return ESP_ERR_INVALID_ARG;
}
if ((i2s_bits_per_sample_t) audio_stream_info.bits_per_sample > this->bits_per_sample_) {
// Currently can't handle the case when the incoming audio has more bits per sample than the configured value
return ESP_ERR_INVALID_ARG;
}
if (audio_stream_info.channels == 1) {
return i2s_set_clk(this->parent_->get_port(), this->sample_rate_, this->bits_per_sample_, I2S_CHANNEL_MONO);
} else if (audio_stream_info.channels == 2) {
return i2s_set_clk(this->parent_->get_port(), this->sample_rate_, this->bits_per_sample_, I2S_CHANNEL_STEREO);
}
return ESP_ERR_INVALID_ARG;
}
void I2SAudioSpeaker::delete_task_(size_t buffer_size) {
this->audio_ring_buffer_.reset(); // Releases onwership of the shared_ptr
if (this->data_buffer_ != nullptr) {
ExternalRAMAllocator<uint8_t> allocator(ExternalRAMAllocator<uint8_t>::ALLOW_FAILURE);
allocator.deallocate(this->data_buffer_, buffer_size);
this->data_buffer_ = nullptr;
}
xEventGroupSetBits(this->event_group_, SpeakerEventGroupBits::STATE_STOPPED);
this->task_created_ = false;
vTaskDelete(nullptr);
}
} // namespace i2s_audio
} // namespace esphome
#endif // USE_ESP32