1
0
mirror of https://github.com/esphome/esphome.git synced 2025-09-04 04:12:23 +01:00
Files
esphome/esphome/components/lc709203f/lc709203f.cpp
2025-08-27 19:30:33 +10:00

285 lines
12 KiB
C++

#include "lc709203f.h"
#include "esphome/core/helpers.h"
#include "esphome/core/log.h"
namespace esphome {
namespace lc709203f {
static const char *const TAG = "lc709203f.sensor";
// Device I2C address. This address is fixed.
static const uint8_t LC709203F_I2C_ADDR_DEFAULT = 0x0B;
// Device registers
static const uint8_t LC709203F_BEFORE_RSOC = 0x04;
static const uint8_t LC709203F_THERMISTOR_B = 0x06;
static const uint8_t LC709203F_INITIAL_RSOC = 0x07;
static const uint8_t LC709203F_CELL_TEMPERATURE = 0x08;
static const uint8_t LC709203F_CELL_VOLTAGE = 0x09;
static const uint8_t LC709203F_CURRENT_DIRECTION = 0x0A;
static const uint8_t LC709203F_APA = 0x0B;
static const uint8_t LC709203F_APT = 0x0C;
static const uint8_t LC709203F_RSOC = 0x0D;
static const uint8_t LC709203F_ITE = 0x0F;
static const uint8_t LC709203F_IC_VERSION = 0x11;
static const uint8_t LC709203F_CHANGE_OF_THE_PARAMETER = 0x12;
static const uint8_t LC709203F_ALARM_LOW_RSOC = 0x13;
static const uint8_t LC709203F_ALARM_LOW_CELL_VOLTAGE = 0x14;
static const uint8_t LC709203F_IC_POWER_MODE = 0x15;
static const uint8_t LC709203F_STATUS_BIT = 0x16;
static const uint8_t LC709203F_NUMBER_OF_THE_PARAMETER = 0x1A;
static const uint8_t LC709203F_POWER_MODE_ON = 0x0001;
static const uint8_t LC709203F_POWER_MODE_SLEEP = 0x0002;
// The number of times to retry an I2C transaction before giving up. In my experience,
// 10 is a good number here that will take care of most bus issues that require retry.
static const uint8_t LC709203F_I2C_RETRY_COUNT = 10;
void Lc709203f::setup() {
// Note: The setup implements a small state machine. This is because we want to have
// delays before and after sending the RSOC command. The full init process should be:
// INIT->RSOC->TEMP_SETUP->NORMAL
// The setup() function will only perform the first part of the initialization process.
// Assuming no errors, the whole process should occur during the setup() function and
// the first two calls to update(). After that, the part should remain in normal mode
// until a device reset.
//
// This device can be picky about I2C communication and can error out occasionally. The
// get/set register functions impelment retry logic to retry the I2C transactions. The
// initialization code checks the return code from those functions. If they don't return
// NO_ERROR (0x00), that part of the initialization aborts and will be retried on the next
// call to update().
// Set power mode to on. Note that, unlike some other similar devices, in sleep mode the IC
// does not record power usage. If there is significant power consumption during sleep mode,
// the pack RSOC will likely no longer be correct. Because of that, I do not implement
// sleep mode on this device.
// Initialize device registers. If any of these fail, retry during the update() function.
if (this->set_register_(LC709203F_IC_POWER_MODE, LC709203F_POWER_MODE_ON) != i2c::NO_ERROR) {
return;
}
if (this->set_register_(LC709203F_APA, this->apa_) != i2c::NO_ERROR) {
return;
}
if (this->set_register_(LC709203F_CHANGE_OF_THE_PARAMETER, this->pack_voltage_) != i2c::NO_ERROR) {
return;
}
this->state_ = STATE_RSOC;
// Note: Initialization continues in the update() function.
}
void Lc709203f::update() {
uint16_t buffer;
if (this->state_ == STATE_NORMAL) {
// Note: If we fail to read from the data registers, we do not report any sensor reading.
if (this->voltage_sensor_ != nullptr) {
if (this->get_register_(LC709203F_CELL_VOLTAGE, &buffer) == i2c::NO_ERROR) {
// Raw units are mV
this->voltage_sensor_->publish_state(static_cast<float>(buffer) / 1000.0f);
this->status_clear_warning();
}
}
if (this->battery_remaining_sensor_ != nullptr) {
if (this->get_register_(LC709203F_ITE, &buffer) == i2c::NO_ERROR) {
// Raw units are .1%
this->battery_remaining_sensor_->publish_state(static_cast<float>(buffer) / 10.0f);
this->status_clear_warning();
}
}
if (this->temperature_sensor_ != nullptr) {
// I can't test this with a real thermistor because I don't have a device with
// an attached thermistor. I have turned on the sensor and made sure that it
// sets up the registers properly.
if (this->get_register_(LC709203F_CELL_TEMPERATURE, &buffer) == i2c::NO_ERROR) {
// Raw units are .1 K
this->temperature_sensor_->publish_state((static_cast<float>(buffer) / 10.0f) - 273.15f);
this->status_clear_warning();
}
}
} else if (this->state_ == STATE_INIT) {
// Retry initializing the device registers. We should only get here if the init sequence
// failed during the setup() function. This would likely occur because of a repeated failures
// on the I2C bus. If any of these fail, retry the next time the update() function is called.
if (this->set_register_(LC709203F_IC_POWER_MODE, LC709203F_POWER_MODE_ON) != i2c::NO_ERROR) {
return;
}
if (this->set_register_(LC709203F_APA, this->apa_) != i2c::NO_ERROR) {
return;
}
if (this->set_register_(LC709203F_CHANGE_OF_THE_PARAMETER, this->pack_voltage_) != i2c::NO_ERROR) {
return;
}
this->state_ = STATE_RSOC;
} else if (this->state_ == STATE_RSOC) {
// We implement a delay here to send the initial RSOC command.
// This should run once on the first update() after initialization.
if (this->set_register_(LC709203F_INITIAL_RSOC, 0xAA55) == i2c::NO_ERROR) {
this->state_ = STATE_TEMP_SETUP;
}
} else if (this->state_ == STATE_TEMP_SETUP) {
// This should run once on the second update() after initialization.
if (this->temperature_sensor_ != nullptr) {
// This assumes that a thermistor is attached to the device as shown in the datahseet.
if (this->set_register_(LC709203F_STATUS_BIT, 0x0001) == i2c::NO_ERROR) {
if (this->set_register_(LC709203F_THERMISTOR_B, this->b_constant_) == i2c::NO_ERROR) {
this->state_ = STATE_NORMAL;
}
}
} else if (this->set_register_(LC709203F_STATUS_BIT, 0x0000) == i2c::NO_ERROR) {
// The device expects to get updates to the temperature in this mode.
// I am not doing that now. The temperature register defaults to 25C.
// In theory, we could have another temperature sensor and have ESPHome
// send updated temperature to the device occasionally, but I have no idea
// how to make that happen.
this->state_ = STATE_NORMAL;
}
}
}
void Lc709203f::dump_config() {
ESP_LOGCONFIG(TAG, "LC709203F:");
LOG_I2C_DEVICE(this);
LOG_UPDATE_INTERVAL(this);
ESP_LOGCONFIG(TAG,
" Pack Size: %d mAH\n"
" Pack APA: 0x%02X",
this->pack_size_, this->apa_);
// This is only true if the pack_voltage_ is either 0x0000 or 0x0001. The config validator
// should have already verified this.
ESP_LOGCONFIG(TAG, " Pack Rated Voltage: 3.%sV", this->pack_voltage_ == 0x0000 ? "8" : "7");
LOG_SENSOR(" ", "Voltage", this->voltage_sensor_);
LOG_SENSOR(" ", "Battery Remaining", this->battery_remaining_sensor_);
if (this->temperature_sensor_ != nullptr) {
LOG_SENSOR(" ", "Temperature", this->temperature_sensor_);
ESP_LOGCONFIG(TAG, " B_Constant: %d", this->b_constant_);
} else {
ESP_LOGCONFIG(TAG, " No Temperature Sensor");
}
}
uint8_t Lc709203f::get_register_(uint8_t register_to_read, uint16_t *register_value) {
i2c::ErrorCode return_code;
uint8_t read_buffer[6];
read_buffer[0] = (this->address_) << 1;
read_buffer[1] = register_to_read;
read_buffer[2] = ((this->address_) << 1) | 0x01;
for (uint8_t i = 0; i <= LC709203F_I2C_RETRY_COUNT; i++) {
// Note: the read_register() function does not send a stop between the write and
// the read portions of the I2C transation when you set the last variable to 'false'
// as we do below. Some of the other I2C read functions such as the generic read()
// function will send a stop between the read and the write portion of the I2C
// transaction. This is bad in this case and will result in reading nothing but 0xFFFF
// from the registers.
return_code = this->read_register(register_to_read, &read_buffer[3], 3);
if (return_code != i2c::NO_ERROR) {
// Error on the i2c bus
this->status_set_warning(
str_sprintf("Error code %d when reading from register 0x%02X", return_code, register_to_read).c_str());
} else if (crc8(read_buffer, 5, 0x00, 0x07, true) != read_buffer[5]) {
// I2C indicated OK, but the CRC of the data does not matcth.
this->status_set_warning(str_sprintf("CRC error reading from register 0x%02X", register_to_read).c_str());
} else {
*register_value = ((uint16_t) read_buffer[4] << 8) | (uint16_t) read_buffer[3];
return i2c::NO_ERROR;
}
}
// If we get here, we tried LC709203F_I2C_RETRY_COUNT times to read the register and
// failed each time. Set the register value to 0 and return the I2C error code or 0xFF
// to indicate a CRC failure. It will be up to the higher level code what to do when
// this happens.
*register_value = 0x0000;
if (return_code != i2c::NO_ERROR) {
return return_code;
} else {
return 0xFF;
}
}
uint8_t Lc709203f::set_register_(uint8_t register_to_set, uint16_t value_to_set) {
i2c::ErrorCode return_code;
uint8_t write_buffer[5];
// Note: We don't actually send byte[0] of the buffer. We include it because it is
// part of the CRC calculation.
write_buffer[0] = (this->address_) << 1;
write_buffer[1] = register_to_set;
write_buffer[2] = value_to_set & 0xFF; // Low byte
write_buffer[3] = (value_to_set >> 8) & 0xFF; // High byte
write_buffer[4] = crc8(write_buffer, 4, 0x00, 0x07, true);
for (uint8_t i = 0; i <= LC709203F_I2C_RETRY_COUNT; i++) {
// Note: we don't write the first byte of the write buffer to the device.
// This is done automatically by the write() function.
return_code = this->write(&write_buffer[1], 4);
if (return_code == i2c::NO_ERROR) {
return return_code;
} else {
this->status_set_warning(
str_sprintf("Error code %d when writing to register 0x%02X", return_code, register_to_set).c_str());
}
}
// If we get here, we tried to send the data LC709203F_I2C_RETRY_COUNT times and failed.
// We return the I2C error code, it is up to the higher level code what to do about it.
return return_code;
}
void Lc709203f::set_pack_size(uint16_t pack_size) {
static const uint16_t PACK_SIZE_ARRAY[6] = {100, 200, 500, 1000, 2000, 3000};
static const uint16_t APA_ARRAY[6] = {0x08, 0x0B, 0x10, 0x19, 0x2D, 0x36};
float slope;
float intercept;
this->pack_size_ = pack_size; // Pack size in mAH
// The size is used to calculate the 'Adjustment Pack Application' number.
// Here we assume a type 01 or type 03 battery and do a linear curve fit to find the APA.
for (uint8_t i = 0; i < 6; i++) {
if (PACK_SIZE_ARRAY[i] == pack_size) {
// If the pack size is exactly one of the values in the array.
this->apa_ = APA_ARRAY[i];
return;
} else if ((i > 0) && (PACK_SIZE_ARRAY[i] > pack_size) && (PACK_SIZE_ARRAY[i - 1] < pack_size)) {
// If the pack size is between the current array element and the previous. Do a linear
// Curve fit to determine the APA value.
// Type casting is required here to avoid interger division
slope = static_cast<float>(APA_ARRAY[i] - APA_ARRAY[i - 1]) /
static_cast<float>(PACK_SIZE_ARRAY[i] - PACK_SIZE_ARRAY[i - 1]);
// Type casting might not be needed here.
intercept = static_cast<float>(APA_ARRAY[i]) - slope * static_cast<float>(PACK_SIZE_ARRAY[i]);
this->apa_ = static_cast<uint8_t>(slope * pack_size + intercept);
return;
}
}
// We should never get here. If we do, it means we never set the pack APA. This should
// not be possible because of the config validation. However, if it does happen, the
// consequence is that the RSOC values will likley not be as accurate. However, it should
// not cause an error or crash, so I am not doing any additional checking here.
}
void Lc709203f::set_thermistor_b_constant(uint16_t b_constant) { this->b_constant_ = b_constant; }
void Lc709203f::set_pack_voltage(LC709203FBatteryVoltage pack_voltage) { this->pack_voltage_ = pack_voltage; }
} // namespace lc709203f
} // namespace esphome