1
0
mirror of https://github.com/esphome/esphome.git synced 2025-01-21 21:34:05 +00:00
esphome/esphome/core/helpers.h
2021-07-14 17:08:18 +12:00

341 lines
9.9 KiB
C++

#pragma once
#include <string>
#include <functional>
#include <vector>
#include <memory>
#include <type_traits>
#include "esphome/core/optional.h"
#include "esphome/core/esphal.h"
#ifdef CLANG_TIDY
#undef ICACHE_RAM_ATTR
#define ICACHE_RAM_ATTR
#undef ICACHE_RODATA_ATTR
#define ICACHE_RODATA_ATTR
#endif
#define HOT __attribute__((hot))
#define ESPDEPRECATED(msg) __attribute__((deprecated(msg)))
#define ALWAYS_INLINE __attribute__((always_inline))
#define PACKED __attribute__((packed))
#define xSemaphoreWait(semaphore, wait_time) \
xSemaphoreTake(semaphore, wait_time); \
xSemaphoreGive(semaphore);
namespace esphome {
/// The characters that are allowed in a hostname.
extern const char *const HOSTNAME_CHARACTER_ALLOWLIST;
/// Gets the MAC address as a string, this can be used as way to identify this ESP.
std::string get_mac_address();
std::string get_mac_address_pretty();
std::string to_string(const std::string &val);
std::string to_string(int val);
std::string to_string(long val); // NOLINT
std::string to_string(long long val); // NOLINT
std::string to_string(unsigned val); // NOLINT
std::string to_string(unsigned long val); // NOLINT
std::string to_string(unsigned long long val); // NOLINT
std::string to_string(float val);
std::string to_string(double val);
std::string to_string(long double val);
optional<float> parse_float(const std::string &str);
optional<int> parse_int(const std::string &str);
/// Sanitize the hostname by removing characters that are not in the allowlist and truncating it to 63 chars.
std::string sanitize_hostname(const std::string &hostname);
/// Truncate a string to a specific length
std::string truncate_string(const std::string &s, size_t length);
/// Convert the string to lowercase_underscore.
std::string to_lowercase_underscore(std::string s);
/// Compare string a to string b (ignoring case) and return whether they are equal.
bool str_equals_case_insensitive(const std::string &a, const std::string &b);
bool str_startswith(const std::string &full, const std::string &start);
bool str_endswith(const std::string &full, const std::string &ending);
class HighFrequencyLoopRequester {
public:
void start();
void stop();
static bool is_high_frequency();
protected:
bool started_{false};
};
/** Clamp the value between min and max.
*
* @param val The value.
* @param min The minimum value.
* @param max The maximum value.
* @return val clamped in between min and max.
*/
template<typename T> T clamp(T val, T min, T max);
/** Linearly interpolate between end start and end by completion.
*
* @tparam T The input/output typename.
* @param start The start value.
* @param end The end value.
* @param completion The completion. 0 is start value, 1 is end value.
* @return The linearly interpolated value.
*/
float lerp(float completion, float start, float end);
/// std::make_unique
template<typename T, typename... Args> std::unique_ptr<T> make_unique(Args &&...args) {
return std::unique_ptr<T>(new T(std::forward<Args>(args)...));
}
/// Return a random 32 bit unsigned integer.
uint32_t random_uint32();
/** Returns a random double between 0 and 1.
*
* Note: This function probably doesn't provide a truly uniform distribution.
*/
double random_double();
/// Returns a random float between 0 and 1. Essentially just casts random_double() to a float.
float random_float();
void fast_random_set_seed(uint32_t seed);
uint32_t fast_random_32();
uint16_t fast_random_16();
uint8_t fast_random_8();
/// Applies gamma correction with the provided gamma to value.
float gamma_correct(float value, float gamma);
/// Create a string from a value and an accuracy in decimals.
std::string value_accuracy_to_string(float value, int8_t accuracy_decimals);
/// Convert a uint64_t to a hex string
std::string uint64_to_string(uint64_t num);
/// Convert a uint32_t to a hex string
std::string uint32_to_string(uint32_t num);
/// Sanitizes the input string with the allowlist.
std::string sanitize_string_allowlist(const std::string &s, const std::string &allowlist);
uint8_t reverse_bits_8(uint8_t x);
uint16_t reverse_bits_16(uint16_t x);
uint32_t reverse_bits_32(uint32_t x);
/// Encode a 16-bit unsigned integer given a most and least-significant byte.
uint16_t encode_uint16(uint8_t msb, uint8_t lsb);
/// Decode a 16-bit unsigned integer into an array of two values: most significant byte, least significant byte.
std::array<uint8_t, 2> decode_uint16(uint16_t value);
/// Encode a 32-bit unsigned integer given four bytes in MSB -> LSB order
uint32_t encode_uint32(uint8_t msb, uint8_t byte2, uint8_t byte3, uint8_t lsb);
/***
* An interrupt helper class.
*
* This behaves like std::lock_guard. As long as the value is visible in the current stack, all interrupts
* (including flash reads) will be disabled.
*
* Please note all functions called when the interrupt lock must be marked ICACHE_RAM_ATTR (loading code into
* instruction cache is done via interrupts; disabling interrupts prevents data not already in cache from being
* pulled from flash).
*
* Example:
*
* ```cpp
* // interrupts are enabled
* {
* InterruptLock lock;
* // do something
* // interrupts are disabled
* }
* // interrupts are enabled
* ```
*/
class InterruptLock {
public:
InterruptLock();
~InterruptLock();
protected:
#ifdef ARDUINO_ARCH_ESP8266
uint32_t xt_state_;
#endif
};
/// Calculate a crc8 of data with the provided data length.
uint8_t crc8(uint8_t *data, uint8_t len);
enum ParseOnOffState {
PARSE_NONE = 0,
PARSE_ON,
PARSE_OFF,
PARSE_TOGGLE,
};
ParseOnOffState parse_on_off(const char *str, const char *on = nullptr, const char *off = nullptr);
// Encode raw data to a human-readable string (for debugging)
std::string hexencode(const uint8_t *data, uint32_t len);
template<typename T> std::string hexencode(const T &data) { return hexencode(data.data(), data.size()); }
// https://stackoverflow.com/questions/7858817/unpacking-a-tuple-to-call-a-matching-function-pointer/7858971#7858971
template<int...> struct seq {}; // NOLINT
template<int N, int... S> struct gens : gens<N - 1, N - 1, S...> {}; // NOLINT
template<int... S> struct gens<0, S...> { using type = seq<S...>; }; // NOLINT
template<bool B, class T = void> using enable_if_t = typename std::enable_if<B, T>::type;
template<typename T, enable_if_t<!std::is_pointer<T>::value, int> = 0> T id(T value) { return value; }
template<typename T, enable_if_t<std::is_pointer<T *>::value, int> = 0> T &id(T *value) { return *value; }
template<typename... X> class CallbackManager;
/** Simple helper class to allow having multiple subscribers to a signal.
*
* @tparam Ts The arguments for the callback, wrapped in void().
*/
template<typename... Ts> class CallbackManager<void(Ts...)> {
public:
/// Add a callback to the internal callback list.
void add(std::function<void(Ts...)> &&callback) { this->callbacks_.push_back(std::move(callback)); }
/// Call all callbacks in this manager.
void call(Ts... args) {
for (auto &cb : this->callbacks_)
cb(args...);
}
protected:
std::vector<std::function<void(Ts...)>> callbacks_;
};
// https://stackoverflow.com/a/37161919/8924614
template<class T, class... Args>
struct is_callable // NOLINT
{
template<class U> static auto test(U *p) -> decltype((*p)(std::declval<Args>()...), void(), std::true_type());
template<class U> static auto test(...) -> decltype(std::false_type());
static constexpr auto value = decltype(test<T>(nullptr))::value; // NOLINT
};
template<typename T, typename... X> class TemplatableValue {
public:
TemplatableValue() : type_(EMPTY) {}
template<typename F, enable_if_t<!is_callable<F, X...>::value, int> = 0>
TemplatableValue(F value) : type_(VALUE), value_(value) {}
template<typename F, enable_if_t<is_callable<F, X...>::value, int> = 0>
TemplatableValue(F f) : type_(LAMBDA), f_(f) {}
bool has_value() { return this->type_ != EMPTY; }
T value(X... x) {
if (this->type_ == LAMBDA) {
return this->f_(x...);
}
// return value also when empty
return this->value_;
}
optional<T> optional_value(X... x) {
if (!this->has_value()) {
return {};
}
return this->value(x...);
}
T value_or(X... x, T default_value) {
if (!this->has_value()) {
return default_value;
}
return this->value(x...);
}
protected:
enum {
EMPTY,
VALUE,
LAMBDA,
} type_;
T value_;
std::function<T(X...)> f_;
};
template<typename... X> class TemplatableStringValue : public TemplatableValue<std::string, X...> {
public:
TemplatableStringValue() : TemplatableValue<std::string, X...>() {}
template<typename F, enable_if_t<!is_callable<F, X...>::value, int> = 0>
TemplatableStringValue(F value) : TemplatableValue<std::string, X...>(value) {}
template<typename F, enable_if_t<is_callable<F, X...>::value, int> = 0>
TemplatableStringValue(F f)
: TemplatableValue<std::string, X...>([f](X... x) -> std::string { return to_string(f(x...)); }) {}
};
void delay_microseconds_accurate(uint32_t usec);
template<typename T> class Deduplicator {
public:
bool next(T value) {
if (this->has_value_) {
if (this->last_value_ == value)
return false;
}
this->has_value_ = true;
this->last_value_ = value;
return true;
}
bool has_value() const { return this->has_value_; }
protected:
bool has_value_{false};
T last_value_{};
};
template<typename T> class Parented {
public:
Parented() {}
Parented(T *parent) : parent_(parent) {}
T *get_parent() const { return parent_; }
void set_parent(T *parent) { parent_ = parent; }
protected:
T *parent_{nullptr};
};
uint32_t fnv1_hash(const std::string &str);
template<typename T> T *new_buffer(size_t length) {
T *buffer;
#ifdef ARDUINO_ARCH_ESP32
if (psramFound()) {
buffer = (T *) ps_malloc(length);
} else {
buffer = new T[length];
}
#else
buffer = new T[length];
#endif
return buffer;
}
} // namespace esphome