1
0
mirror of https://github.com/esphome/esphome.git synced 2025-04-07 03:10:27 +01:00
Citric Lee c0dcecc465
Add: Seeed Studio mr60fda2 mmwave sensor (#7576)
Co-authored-by: Jesse Hills <3060199+jesserockz@users.noreply.github.com>
Co-authored-by: Spencer Yan <spencer@spenyan.com>
2024-11-26 13:53:21 +13:00

369 lines
13 KiB
C++

#include "seeed_mr60fda2.h"
#include "esphome/core/log.h"
#include <cinttypes>
#include <utility>
namespace esphome {
namespace seeed_mr60fda2 {
static const char *const TAG = "seeed_mr60fda2";
// Prints the component's configuration data. dump_config() prints all of the component's configuration
// items in an easy-to-read format, including the configuration key-value pairs.
void MR60FDA2Component::dump_config() {
ESP_LOGCONFIG(TAG, "MR60FDA2:");
#ifdef USE_BINARY_SENSOR
LOG_BINARY_SENSOR(" ", "People Exist Binary Sensor", this->people_exist_binary_sensor_);
LOG_BINARY_SENSOR(" ", "Is Fall Binary Sensor", this->fall_detected_binary_sensor_);
#endif
#ifdef USE_BUTTON
LOG_BUTTON(" ", "Get Radar Parameters Button", this->get_radar_parameters_button_);
LOG_BUTTON(" ", "Reset Radar Button", this->factory_reset_button_);
#endif
#ifdef USE_SELECT
LOG_SELECT(" ", "Install Height Select", this->install_height_select_);
LOG_SELECT(" ", "Height Threshold Select", this->height_threshold_select_);
LOG_SELECT(" ", "Sensitivity Select", this->sensitivity_select_);
#endif
}
// Initialisation functions
void MR60FDA2Component::setup() {
ESP_LOGCONFIG(TAG, "Setting up MR60FDA2...");
this->check_uart_settings(115200);
this->current_frame_locate_ = LOCATE_FRAME_HEADER;
this->current_frame_id_ = 0;
this->current_frame_len_ = 0;
this->current_data_frame_len_ = 0;
this->current_frame_type_ = 0;
this->get_radar_parameters();
memset(this->current_frame_buf_, 0, FRAME_BUF_MAX_SIZE);
memset(this->current_data_buf_, 0, DATA_BUF_MAX_SIZE);
ESP_LOGCONFIG(TAG, "Set up MR60FDA2 complete");
}
// main loop
void MR60FDA2Component::loop() {
uint8_t byte;
// Is there data on the serial port
while (this->available()) {
this->read_byte(&byte);
this->split_frame_(byte); // split data frame
}
}
/**
* @brief Calculate the checksum for a byte array.
*
* This function calculates the checksum for the provided byte array using an
* XOR-based checksum algorithm.
*
* @param data The byte array to calculate the checksum for.
* @param len The length of the byte array.
* @return The calculated checksum.
*/
static uint8_t calculate_checksum(const uint8_t *data, size_t len) {
uint8_t checksum = 0;
for (size_t i = 0; i < len; i++) {
checksum ^= data[i];
}
checksum = ~checksum;
return checksum;
}
/**
* @brief Validate the checksum of a byte array.
*
* This function validates the checksum of the provided byte array by comparing
* it to the expected checksum.
*
* @param data The byte array to validate.
* @param len The length of the byte array.
* @param expected_checksum The expected checksum.
* @return True if the checksum is valid, false otherwise.
*/
static bool validate_checksum(const uint8_t *data, size_t len, uint8_t expected_checksum) {
return calculate_checksum(data, len) == expected_checksum;
}
static uint8_t find_nearest_index(float value, const float *arr, int size) {
int nearest_index = 0;
float min_diff = std::abs(value - arr[0]);
for (int i = 1; i < size; ++i) {
float diff = std::abs(value - arr[i]);
if (diff < min_diff) {
min_diff = diff;
nearest_index = i;
}
}
return nearest_index;
}
/**
* @brief Convert a float value to a byte array.
*
* This function converts a float value to a byte array.
*
* @param value The float value to convert.
* @param bytes The byte array to store the converted value.
*/
static void float_to_bytes(float value, unsigned char *bytes) {
union {
float float_value;
unsigned char byte_array[4];
} u;
u.float_value = value;
memcpy(bytes, u.byte_array, 4);
}
/**
* @brief Convert a 32-bit unsigned integer to a byte array.
*
* This function converts a 32-bit unsigned integer to a byte array.
*
* @param value The 32-bit unsigned integer to convert.
* @param bytes The byte array to store the converted value.
*/
static void int_to_bytes(uint32_t value, unsigned char *bytes) {
bytes[0] = value & 0xFF;
bytes[1] = (value >> 8) & 0xFF;
bytes[2] = (value >> 16) & 0xFF;
bytes[3] = (value >> 24) & 0xFF;
}
void MR60FDA2Component::split_frame_(uint8_t buffer) {
switch (this->current_frame_locate_) {
case LOCATE_FRAME_HEADER: // starting buffer
if (buffer == FRAME_HEADER_BUFFER) {
this->current_frame_len_ = 1;
this->current_frame_buf_[this->current_frame_len_ - 1] = buffer;
this->current_frame_locate_++;
}
break;
case LOCATE_ID_FRAME1:
this->current_frame_id_ = buffer << 8;
this->current_frame_len_++;
this->current_frame_buf_[this->current_frame_len_ - 1] = buffer;
this->current_frame_locate_++;
break;
case LOCATE_ID_FRAME2:
this->current_frame_id_ += buffer;
this->current_frame_len_++;
this->current_frame_buf_[this->current_frame_len_ - 1] = buffer;
this->current_frame_locate_++;
break;
case LOCATE_LENGTH_FRAME_H:
this->current_data_frame_len_ = buffer << 8;
if (this->current_data_frame_len_ == 0x00) {
this->current_frame_len_++;
this->current_frame_buf_[this->current_frame_len_ - 1] = buffer;
this->current_frame_locate_++;
} else {
this->current_frame_locate_ = LOCATE_FRAME_HEADER;
}
break;
case LOCATE_LENGTH_FRAME_L:
this->current_data_frame_len_ += buffer;
if (this->current_data_frame_len_ > DATA_BUF_MAX_SIZE) {
this->current_frame_locate_ = LOCATE_FRAME_HEADER;
} else {
this->current_frame_len_++;
this->current_frame_buf_[this->current_frame_len_ - 1] = buffer;
this->current_frame_locate_++;
}
break;
case LOCATE_TYPE_FRAME1:
this->current_frame_type_ = buffer << 8;
this->current_frame_len_++;
this->current_frame_buf_[this->current_frame_len_ - 1] = buffer;
this->current_frame_locate_++;
break;
case LOCATE_TYPE_FRAME2:
this->current_frame_type_ += buffer;
if ((this->current_frame_type_ == IS_FALL_TYPE_BUFFER) ||
(this->current_frame_type_ == PEOPLE_EXIST_TYPE_BUFFER) ||
(this->current_frame_type_ == RESULT_INSTALL_HEIGHT) || (this->current_frame_type_ == RESULT_PARAMETERS) ||
(this->current_frame_type_ == RESULT_HEIGHT_THRESHOLD) || (this->current_frame_type_ == RESULT_SENSITIVITY)) {
this->current_frame_len_++;
this->current_frame_buf_[this->current_frame_len_ - 1] = buffer;
this->current_frame_locate_++;
} else {
this->current_frame_locate_ = LOCATE_FRAME_HEADER;
}
break;
case LOCATE_HEAD_CKSUM_FRAME:
if (validate_checksum(this->current_frame_buf_, this->current_frame_len_, buffer)) {
this->current_frame_len_++;
this->current_frame_buf_[this->current_frame_len_ - 1] = buffer;
this->current_frame_locate_++;
} else {
ESP_LOGD(TAG, "HEAD_CKSUM_FRAME ERROR: 0x%02x", buffer);
ESP_LOGV(TAG, "CURRENT_FRAME: %s %s",
format_hex_pretty(this->current_frame_buf_, this->current_frame_len_).c_str(),
format_hex_pretty(&buffer, 1).c_str());
this->current_frame_locate_ = LOCATE_FRAME_HEADER;
}
break;
case LOCATE_DATA_FRAME:
this->current_frame_len_++;
this->current_frame_buf_[this->current_frame_len_ - 1] = buffer;
this->current_data_buf_[this->current_frame_len_ - LEN_TO_DATA_FRAME] = buffer;
if (this->current_frame_len_ - LEN_TO_HEAD_CKSUM == this->current_data_frame_len_) {
this->current_frame_locate_++;
}
if (this->current_frame_len_ > FRAME_BUF_MAX_SIZE) {
ESP_LOGD(TAG, "PRACTICE_DATA_FRAME_LEN ERROR: %d", this->current_frame_len_ - LEN_TO_HEAD_CKSUM);
this->current_frame_locate_ = LOCATE_FRAME_HEADER;
}
break;
case LOCATE_DATA_CKSUM_FRAME:
if (validate_checksum(this->current_data_buf_, this->current_data_frame_len_, buffer)) {
this->current_frame_len_++;
this->current_frame_buf_[this->current_frame_len_ - 1] = buffer;
this->current_frame_locate_++;
this->process_frame_();
} else {
ESP_LOGD(TAG, "DATA_CKSUM_FRAME ERROR: 0x%02x", buffer);
ESP_LOGV(TAG, "GET CURRENT_FRAME: %s %s",
format_hex_pretty(this->current_frame_buf_, this->current_frame_len_).c_str(),
format_hex_pretty(&buffer, 1).c_str());
this->current_frame_locate_ = LOCATE_FRAME_HEADER;
}
break;
default:
break;
}
}
void MR60FDA2Component::process_frame_() {
switch (this->current_frame_type_) {
case IS_FALL_TYPE_BUFFER:
if (this->fall_detected_binary_sensor_ != nullptr) {
this->fall_detected_binary_sensor_->publish_state(this->current_frame_buf_[LEN_TO_HEAD_CKSUM]);
}
this->current_frame_locate_ = LOCATE_FRAME_HEADER;
break;
case PEOPLE_EXIST_TYPE_BUFFER:
if (this->people_exist_binary_sensor_ != nullptr)
this->people_exist_binary_sensor_->publish_state(this->current_frame_buf_[LEN_TO_HEAD_CKSUM]);
this->current_frame_locate_ = LOCATE_FRAME_HEADER;
break;
case RESULT_INSTALL_HEIGHT:
if (this->current_data_buf_[0]) {
ESP_LOGD(TAG, "Successfully set the mounting height");
} else {
ESP_LOGD(TAG, "Failed to set the mounting height");
}
this->current_frame_locate_ = LOCATE_FRAME_HEADER;
break;
case RESULT_HEIGHT_THRESHOLD:
if (this->current_data_buf_[0]) {
ESP_LOGD(TAG, "Successfully set the height threshold");
} else {
ESP_LOGD(TAG, "Failed to set the height threshold");
}
this->current_frame_locate_ = LOCATE_FRAME_HEADER;
break;
case RESULT_SENSITIVITY:
if (this->current_data_buf_[0]) {
ESP_LOGD(TAG, "Successfully set the sensitivity");
} else {
ESP_LOGD(TAG, "Failed to set the sensitivity");
}
this->current_frame_locate_ = LOCATE_FRAME_HEADER;
break;
case RESULT_PARAMETERS: {
float install_height_float = 0;
float height_threshold_float = 0;
uint32_t current_sensitivity = 0;
if (this->install_height_select_ != nullptr) {
uint32_t current_install_height_int =
encode_uint32(current_data_buf_[3], current_data_buf_[2], current_data_buf_[1], current_data_buf_[0]);
install_height_float = bit_cast<float>(current_install_height_int);
uint32_t select_index = find_nearest_index(install_height_float, INSTALL_HEIGHT, 7);
this->install_height_select_->publish_state(this->install_height_select_->at(select_index).value());
}
if (this->height_threshold_select_ != nullptr) {
uint32_t current_height_threshold_int =
encode_uint32(current_data_buf_[7], current_data_buf_[6], current_data_buf_[5], current_data_buf_[4]);
height_threshold_float = bit_cast<float>(current_height_threshold_int);
size_t select_index = find_nearest_index(height_threshold_float, HEIGHT_THRESHOLD, 7);
this->height_threshold_select_->publish_state(this->height_threshold_select_->at(select_index).value());
}
if (this->sensitivity_select_ != nullptr) {
current_sensitivity =
encode_uint32(current_data_buf_[11], current_data_buf_[10], current_data_buf_[9], current_data_buf_[8]);
uint32_t select_index = find_nearest_index(current_sensitivity, SENSITIVITY, 3);
this->sensitivity_select_->publish_state(this->sensitivity_select_->at(select_index).value());
}
ESP_LOGD(TAG, "Mounting height: %.2f, Height threshold: %.2f, Sensitivity: %" PRIu32, install_height_float,
height_threshold_float, current_sensitivity);
this->current_frame_locate_ = LOCATE_FRAME_HEADER;
break;
}
default:
break;
}
}
// Send Heartbeat Packet Command
void MR60FDA2Component::set_install_height(uint8_t index) {
uint8_t send_data[13] = {0x01, 0x00, 0x00, 0x00, 0x04, 0x0E, 0x04, 0xF0, 0x00, 0x00, 0x00, 0x00, 0x00};
float_to_bytes(INSTALL_HEIGHT[index], &send_data[8]);
send_data[12] = calculate_checksum(send_data + 8, 4);
this->write_array(send_data, 13);
ESP_LOGV(TAG, "SEND INSTALL HEIGHT FRAME: %s", format_hex_pretty(send_data, 13).c_str());
}
void MR60FDA2Component::set_height_threshold(uint8_t index) {
uint8_t send_data[13] = {0x01, 0x00, 0x00, 0x00, 0x04, 0x0E, 0x08, 0xFC, 0x00, 0x00, 0x00, 0x00, 0x00};
float_to_bytes(INSTALL_HEIGHT[index], &send_data[8]);
send_data[12] = calculate_checksum(send_data + 8, 4);
this->write_array(send_data, 13);
ESP_LOGV(TAG, "SEND HEIGHT THRESHOLD: %s", format_hex_pretty(send_data, 13).c_str());
}
void MR60FDA2Component::set_sensitivity(uint8_t index) {
uint8_t send_data[13] = {0x01, 0x00, 0x00, 0x00, 0x04, 0x0E, 0x0A, 0xFE, 0x00, 0x00, 0x00, 0x00, 0x00};
int_to_bytes(SENSITIVITY[index], &send_data[8]);
send_data[12] = calculate_checksum(send_data + 8, 4);
this->write_array(send_data, 13);
ESP_LOGV(TAG, "SEND SET SENSITIVITY: %s", format_hex_pretty(send_data, 13).c_str());
}
void MR60FDA2Component::get_radar_parameters() {
uint8_t send_data[8] = {0x01, 0x00, 0x00, 0x00, 0x00, 0x0E, 0x06, 0xF6};
this->write_array(send_data, 8);
ESP_LOGV(TAG, "SEND GET PARAMETERS: %s", format_hex_pretty(send_data, 8).c_str());
}
void MR60FDA2Component::factory_reset() {
uint8_t send_data[8] = {0x01, 0x00, 0x00, 0x00, 0x00, 0x21, 0x10, 0xCF};
this->write_array(send_data, 8);
ESP_LOGV(TAG, "SEND RESET: %s", format_hex_pretty(send_data, 8).c_str());
this->get_radar_parameters();
}
} // namespace seeed_mr60fda2
} // namespace esphome