1
0
mirror of https://github.com/esphome/esphome.git synced 2025-11-16 06:45:48 +00:00
Files
esphome/esphome/components/i2c/i2c_bus_esp_idf.cpp
2025-08-27 19:30:33 +10:00

303 lines
11 KiB
C++

#ifdef USE_ESP_IDF
#include "i2c_bus_esp_idf.h"
#include <driver/gpio.h>
#include <cinttypes>
#include <cstring>
#include "esphome/core/application.h"
#include "esphome/core/hal.h"
#include "esphome/core/helpers.h"
#include "esphome/core/log.h"
namespace esphome {
namespace i2c {
static const char *const TAG = "i2c.idf";
void IDFI2CBus::setup() {
static i2c_port_t next_port = I2C_NUM_0;
this->port_ = next_port;
if (this->port_ == I2C_NUM_MAX) {
ESP_LOGE(TAG, "No more than %u buses supported", I2C_NUM_MAX);
this->mark_failed();
return;
}
if (this->timeout_ > 13000) {
ESP_LOGW(TAG, "Using max allowed timeout: 13 ms");
this->timeout_ = 13000;
}
this->recover_();
next_port = (i2c_port_t) (next_port + 1);
i2c_master_bus_config_t bus_conf{};
memset(&bus_conf, 0, sizeof(bus_conf));
bus_conf.sda_io_num = gpio_num_t(sda_pin_);
bus_conf.scl_io_num = gpio_num_t(scl_pin_);
bus_conf.i2c_port = this->port_;
bus_conf.glitch_ignore_cnt = 7;
#if SOC_LP_I2C_SUPPORTED
if (this->port_ < SOC_HP_I2C_NUM) {
bus_conf.clk_source = I2C_CLK_SRC_DEFAULT;
} else {
bus_conf.lp_source_clk = LP_I2C_SCLK_DEFAULT;
}
#else
bus_conf.clk_source = I2C_CLK_SRC_DEFAULT;
#endif
bus_conf.flags.enable_internal_pullup = sda_pullup_enabled_ || scl_pullup_enabled_;
esp_err_t err = i2c_new_master_bus(&bus_conf, &this->bus_);
if (err != ESP_OK) {
ESP_LOGW(TAG, "i2c_new_master_bus failed: %s", esp_err_to_name(err));
this->mark_failed();
return;
}
i2c_device_config_t dev_conf{};
memset(&dev_conf, 0, sizeof(dev_conf));
dev_conf.dev_addr_length = I2C_ADDR_BIT_LEN_7;
dev_conf.device_address = I2C_DEVICE_ADDRESS_NOT_USED;
dev_conf.scl_speed_hz = this->frequency_;
dev_conf.scl_wait_us = this->timeout_;
err = i2c_master_bus_add_device(this->bus_, &dev_conf, &this->dev_);
if (err != ESP_OK) {
ESP_LOGW(TAG, "i2c_master_bus_add_device failed: %s", esp_err_to_name(err));
this->mark_failed();
return;
}
this->initialized_ = true;
if (this->scan_) {
ESP_LOGV(TAG, "Scanning for devices");
this->i2c_scan_();
}
}
void IDFI2CBus::dump_config() {
ESP_LOGCONFIG(TAG, "I2C Bus:");
ESP_LOGCONFIG(TAG,
" SDA Pin: GPIO%u\n"
" SCL Pin: GPIO%u\n"
" Frequency: %" PRIu32 " Hz",
this->sda_pin_, this->scl_pin_, this->frequency_);
if (timeout_ > 0) {
ESP_LOGCONFIG(TAG, " Timeout: %" PRIu32 "us", this->timeout_);
}
switch (this->recovery_result_) {
case RECOVERY_COMPLETED:
ESP_LOGCONFIG(TAG, " Recovery: bus successfully recovered");
break;
case RECOVERY_FAILED_SCL_LOW:
ESP_LOGCONFIG(TAG, " Recovery: failed, SCL is held low on the bus");
break;
case RECOVERY_FAILED_SDA_LOW:
ESP_LOGCONFIG(TAG, " Recovery: failed, SDA is held low on the bus");
break;
}
if (this->scan_) {
ESP_LOGCONFIG(TAG, "Results from bus scan:");
if (scan_results_.empty()) {
ESP_LOGCONFIG(TAG, "Found no devices");
} else {
for (const auto &s : scan_results_) {
if (s.second) {
ESP_LOGCONFIG(TAG, "Found device at address 0x%02X", s.first);
} else {
ESP_LOGE(TAG, "Unknown error at address 0x%02X", s.first);
}
}
}
}
}
ErrorCode IDFI2CBus::write_readv(uint8_t address, const uint8_t *write_buffer, size_t write_count, uint8_t *read_buffer,
size_t read_count) {
// logging is only enabled with v level, if warnings are shown the caller
// should log them
if (!initialized_) {
ESP_LOGW(TAG, "i2c bus not initialized!");
return ERROR_NOT_INITIALIZED;
}
i2c_operation_job_t jobs[8]{};
size_t num_jobs = 0;
uint8_t write_addr = (address << 1) | I2C_MASTER_WRITE;
uint8_t read_addr = (address << 1) | I2C_MASTER_READ;
ESP_LOGV(TAG, "Writing %zu bytes, reading %zu bytes", write_count, read_count);
if (read_count == 0 && write_count == 0) {
// basically just a bus probe. Send a start, address and stop
ESP_LOGV(TAG, "0x%02X BUS PROBE", address);
jobs[num_jobs++].command = I2C_MASTER_CMD_START;
jobs[num_jobs].command = I2C_MASTER_CMD_WRITE;
jobs[num_jobs].write.ack_check = true;
jobs[num_jobs].write.data = &write_addr;
jobs[num_jobs++].write.total_bytes = 1;
} else {
if (write_count != 0) {
ESP_LOGV(TAG, "0x%02X TX %s", address, format_hex_pretty(write_buffer, write_count).c_str());
jobs[num_jobs++].command = I2C_MASTER_CMD_START;
jobs[num_jobs].command = I2C_MASTER_CMD_WRITE;
jobs[num_jobs].write.ack_check = true;
jobs[num_jobs].write.data = &write_addr;
jobs[num_jobs++].write.total_bytes = 1;
jobs[num_jobs].command = I2C_MASTER_CMD_WRITE;
jobs[num_jobs].write.ack_check = true;
jobs[num_jobs].write.data = (uint8_t *) write_buffer;
jobs[num_jobs++].write.total_bytes = write_count;
}
if (read_count != 0) {
ESP_LOGV(TAG, "0x%02X RX bytes %zu", address, read_count);
jobs[num_jobs++].command = I2C_MASTER_CMD_START;
jobs[num_jobs].command = I2C_MASTER_CMD_WRITE;
jobs[num_jobs].write.ack_check = true;
jobs[num_jobs].write.data = &read_addr;
jobs[num_jobs++].write.total_bytes = 1;
if (read_count > 1) {
jobs[num_jobs].command = I2C_MASTER_CMD_READ;
jobs[num_jobs].read.ack_value = I2C_ACK_VAL;
jobs[num_jobs].read.data = read_buffer;
jobs[num_jobs++].read.total_bytes = read_count - 1;
}
jobs[num_jobs].command = I2C_MASTER_CMD_READ;
jobs[num_jobs].read.ack_value = I2C_NACK_VAL;
jobs[num_jobs].read.data = read_buffer + read_count - 1;
jobs[num_jobs++].read.total_bytes = 1;
}
}
jobs[num_jobs++].command = I2C_MASTER_CMD_STOP;
ESP_LOGV(TAG, "Sending %zu jobs", num_jobs);
esp_err_t err = i2c_master_execute_defined_operations(this->dev_, jobs, num_jobs, 20);
if (err == ESP_ERR_INVALID_STATE) {
ESP_LOGV(TAG, "TX to %02X failed: not acked", address);
return ERROR_NOT_ACKNOWLEDGED;
} else if (err == ESP_ERR_TIMEOUT) {
ESP_LOGV(TAG, "TX to %02X failed: timeout", address);
return ERROR_TIMEOUT;
} else if (err != ESP_OK) {
ESP_LOGV(TAG, "TX to %02X failed: %s", address, esp_err_to_name(err));
return ERROR_UNKNOWN;
}
return ERROR_OK;
}
/// Perform I2C bus recovery, see:
/// https://www.nxp.com/docs/en/user-guide/UM10204.pdf
/// https://www.analog.com/media/en/technical-documentation/application-notes/54305147357414AN686_0.pdf
void IDFI2CBus::recover_() {
ESP_LOGI(TAG, "Performing bus recovery");
const auto scl_pin = static_cast<gpio_num_t>(scl_pin_);
const auto sda_pin = static_cast<gpio_num_t>(sda_pin_);
// For the upcoming operations, target for a 60kHz toggle frequency.
// 1000kHz is the maximum frequency for I2C running in standard-mode,
// but lower frequencies are not a problem.
// Note: the timing that is used here is chosen manually, to get
// results that are close to the timing that can be archieved by the
// implementation for the Arduino framework.
const auto half_period_usec = 7;
// Configure SCL pin for open drain input/output, with a pull up resistor.
gpio_set_level(scl_pin, 1);
gpio_config_t scl_config{};
scl_config.pin_bit_mask = 1ULL << scl_pin_;
scl_config.mode = GPIO_MODE_INPUT_OUTPUT_OD;
scl_config.pull_up_en = GPIO_PULLUP_ENABLE;
scl_config.pull_down_en = GPIO_PULLDOWN_DISABLE;
scl_config.intr_type = GPIO_INTR_DISABLE;
gpio_config(&scl_config);
// Configure SDA pin for open drain input/output, with a pull up resistor.
gpio_set_level(sda_pin, 1);
gpio_config_t sda_conf{};
sda_conf.pin_bit_mask = 1ULL << sda_pin_;
sda_conf.mode = GPIO_MODE_INPUT_OUTPUT_OD;
sda_conf.pull_up_en = GPIO_PULLUP_ENABLE;
sda_conf.pull_down_en = GPIO_PULLDOWN_DISABLE;
sda_conf.intr_type = GPIO_INTR_DISABLE;
gpio_config(&sda_conf);
// If SCL is pulled low on the I2C bus, then some device is interfering
// with the SCL line. In that case, the I2C bus cannot be recovered.
delayMicroseconds(half_period_usec);
if (gpio_get_level(scl_pin) == 0) {
ESP_LOGE(TAG, "Recovery failed: SCL is held LOW on the bus");
recovery_result_ = RECOVERY_FAILED_SCL_LOW;
return;
}
// From the specification:
// "If the data line (SDA) is stuck LOW, send nine clock pulses. The
// device that held the bus LOW should release it sometime within
// those nine clocks."
// We don't really have to detect if SDA is stuck low. We'll simply send
// nine clock pulses here, just in case SDA is stuck. Actual checks on
// the SDA line status will be done after the clock pulses.
for (auto i = 0; i < 9; i++) {
gpio_set_level(scl_pin, 0);
delayMicroseconds(half_period_usec);
gpio_set_level(scl_pin, 1);
delayMicroseconds(half_period_usec);
// When SCL is kept LOW at this point, we might be looking at a device
// that applies clock stretching. Wait for the release of the SCL line,
// but not forever. There is no specification for the maximum allowed
// time. We yield and reset the WDT, so as to avoid triggering reset.
// No point in trying to recover the bus by forcing a uC reset. Bus
// should recover in a few ms or less else not likely to recovery at
// all.
auto wait = 250;
while (wait-- && gpio_get_level(scl_pin) == 0) {
App.feed_wdt();
delayMicroseconds(half_period_usec * 2);
}
if (gpio_get_level(scl_pin) == 0) {
ESP_LOGE(TAG, "Recovery failed: SCL is held LOW during clock pulse cycle");
recovery_result_ = RECOVERY_FAILED_SCL_LOW;
return;
}
}
// By now, any stuck device ought to have sent all remaining bits of its
// transaction, meaning that it should have freed up the SDA line, resulting
// in SDA being pulled up.
if (gpio_get_level(sda_pin) == 0) {
ESP_LOGE(TAG, "Recovery failed: SDA is held LOW after clock pulse cycle");
recovery_result_ = RECOVERY_FAILED_SDA_LOW;
return;
}
// From the specification:
// "I2C-bus compatible devices must reset their bus logic on receipt of
// a START or repeated START condition such that they all anticipate
// the sending of a target address, even if these START conditions are
// not positioned according to the proper format."
// While the 9 clock pulses from above might have drained all bits of a
// single byte within a transaction, a device might have more bytes to
// transmit. So here we'll generate a START condition to snap the device
// out of this state.
// SCL and SDA are already high at this point, so we can generate a START
// condition by making the SDA signal LOW.
delayMicroseconds(half_period_usec);
gpio_set_level(sda_pin, 0);
// From the specification:
// "A START condition immediately followed by a STOP condition (void
// message) is an illegal format. Many devices however are designed to
// operate properly under this condition."
// Finally, we'll bring the I2C bus into a starting state by generating
// a STOP condition.
delayMicroseconds(half_period_usec);
gpio_set_level(sda_pin, 1);
recovery_result_ = RECOVERY_COMPLETED;
}
} // namespace i2c
} // namespace esphome
#endif // USE_ESP_IDF