mirror of
https://github.com/esphome/esphome.git
synced 2025-09-02 03:12:20 +01:00
901 lines
33 KiB
C++
901 lines
33 KiB
C++
#pragma once
|
|
|
|
#include <array>
|
|
#include <cmath>
|
|
#include <cstdint>
|
|
#include <cstring>
|
|
#include <functional>
|
|
#include <limits>
|
|
#include <memory>
|
|
#include <string>
|
|
#include <type_traits>
|
|
#include <vector>
|
|
|
|
#include "esphome/core/optional.h"
|
|
|
|
#ifdef USE_ESP8266
|
|
#include <Esp.h>
|
|
#endif
|
|
|
|
#ifdef USE_RP2040
|
|
#include <Arduino.h>
|
|
#endif
|
|
|
|
#ifdef USE_ESP32
|
|
#include <esp_heap_caps.h>
|
|
#endif
|
|
|
|
#if defined(USE_ESP32)
|
|
#include <freertos/FreeRTOS.h>
|
|
#include <freertos/semphr.h>
|
|
#elif defined(USE_LIBRETINY)
|
|
#include <FreeRTOS.h>
|
|
#include <semphr.h>
|
|
#endif
|
|
|
|
#ifdef USE_HOST
|
|
#include <mutex>
|
|
#endif
|
|
|
|
#define HOT __attribute__((hot))
|
|
#define ESPDEPRECATED(msg, when) __attribute__((deprecated(msg)))
|
|
#define ESPHOME_ALWAYS_INLINE __attribute__((always_inline))
|
|
#define PACKED __attribute__((packed))
|
|
|
|
namespace esphome {
|
|
|
|
/// @name STL backports
|
|
///@{
|
|
|
|
// Keep "using" even after the removal of our backports, to avoid breaking existing code.
|
|
using std::to_string;
|
|
using std::is_trivially_copyable;
|
|
using std::make_unique;
|
|
using std::enable_if_t;
|
|
using std::clamp;
|
|
using std::is_invocable;
|
|
#if __cpp_lib_bit_cast >= 201806
|
|
using std::bit_cast;
|
|
#else
|
|
/// Convert data between types, without aliasing issues or undefined behaviour.
|
|
template<
|
|
typename To, typename From,
|
|
enable_if_t<sizeof(To) == sizeof(From) && is_trivially_copyable<From>::value && is_trivially_copyable<To>::value,
|
|
int> = 0>
|
|
To bit_cast(const From &src) {
|
|
To dst;
|
|
memcpy(&dst, &src, sizeof(To));
|
|
return dst;
|
|
}
|
|
#endif
|
|
using std::lerp;
|
|
|
|
// std::byteswap from C++23
|
|
template<typename T> constexpr T byteswap(T n) {
|
|
T m;
|
|
for (size_t i = 0; i < sizeof(T); i++)
|
|
reinterpret_cast<uint8_t *>(&m)[i] = reinterpret_cast<uint8_t *>(&n)[sizeof(T) - 1 - i];
|
|
return m;
|
|
}
|
|
template<> constexpr uint8_t byteswap(uint8_t n) { return n; }
|
|
template<> constexpr uint16_t byteswap(uint16_t n) { return __builtin_bswap16(n); }
|
|
template<> constexpr uint32_t byteswap(uint32_t n) { return __builtin_bswap32(n); }
|
|
template<> constexpr uint64_t byteswap(uint64_t n) { return __builtin_bswap64(n); }
|
|
template<> constexpr int8_t byteswap(int8_t n) { return n; }
|
|
template<> constexpr int16_t byteswap(int16_t n) { return __builtin_bswap16(n); }
|
|
template<> constexpr int32_t byteswap(int32_t n) { return __builtin_bswap32(n); }
|
|
template<> constexpr int64_t byteswap(int64_t n) { return __builtin_bswap64(n); }
|
|
|
|
///@}
|
|
|
|
/// @name Mathematics
|
|
///@{
|
|
|
|
/// Remap \p value from the range (\p min, \p max) to (\p min_out, \p max_out).
|
|
template<typename T, typename U> T remap(U value, U min, U max, T min_out, T max_out) {
|
|
return (value - min) * (max_out - min_out) / (max - min) + min_out;
|
|
}
|
|
|
|
/// Calculate a CRC-8 checksum of \p data with size \p len using the CRC-8-Dallas/Maxim polynomial.
|
|
uint8_t crc8(const uint8_t *data, uint8_t len);
|
|
|
|
/// Calculate a CRC-16 checksum of \p data with size \p len.
|
|
uint16_t crc16(const uint8_t *data, uint16_t len, uint16_t crc = 0xffff, uint16_t reverse_poly = 0xa001,
|
|
bool refin = false, bool refout = false);
|
|
uint16_t crc16be(const uint8_t *data, uint16_t len, uint16_t crc = 0, uint16_t poly = 0x1021, bool refin = false,
|
|
bool refout = false);
|
|
|
|
/// Calculate a FNV-1 hash of \p str.
|
|
uint32_t fnv1_hash(const std::string &str);
|
|
|
|
/// Return a random 32-bit unsigned integer.
|
|
uint32_t random_uint32();
|
|
/// Return a random float between 0 and 1.
|
|
float random_float();
|
|
/// Generate \p len number of random bytes.
|
|
bool random_bytes(uint8_t *data, size_t len);
|
|
|
|
///@}
|
|
|
|
/// @name Bit manipulation
|
|
///@{
|
|
|
|
/// Encode a 16-bit value given the most and least significant byte.
|
|
constexpr uint16_t encode_uint16(uint8_t msb, uint8_t lsb) {
|
|
return (static_cast<uint16_t>(msb) << 8) | (static_cast<uint16_t>(lsb));
|
|
}
|
|
/// Encode a 24-bit value given three bytes in most to least significant byte order.
|
|
constexpr uint32_t encode_uint24(uint8_t byte1, uint8_t byte2, uint8_t byte3) {
|
|
return (static_cast<uint32_t>(byte1) << 16) | (static_cast<uint32_t>(byte2) << 8) | (static_cast<uint32_t>(byte3));
|
|
}
|
|
/// Encode a 32-bit value given four bytes in most to least significant byte order.
|
|
constexpr uint32_t encode_uint32(uint8_t byte1, uint8_t byte2, uint8_t byte3, uint8_t byte4) {
|
|
return (static_cast<uint32_t>(byte1) << 24) | (static_cast<uint32_t>(byte2) << 16) |
|
|
(static_cast<uint32_t>(byte3) << 8) | (static_cast<uint32_t>(byte4));
|
|
}
|
|
|
|
/// Encode a value from its constituent bytes (from most to least significant) in an array with length sizeof(T).
|
|
template<typename T, enable_if_t<std::is_unsigned<T>::value, int> = 0> constexpr T encode_value(const uint8_t *bytes) {
|
|
T val = 0;
|
|
for (size_t i = 0; i < sizeof(T); i++) {
|
|
val <<= 8;
|
|
val |= bytes[i];
|
|
}
|
|
return val;
|
|
}
|
|
/// Encode a value from its constituent bytes (from most to least significant) in an std::array with length sizeof(T).
|
|
template<typename T, enable_if_t<std::is_unsigned<T>::value, int> = 0>
|
|
constexpr T encode_value(const std::array<uint8_t, sizeof(T)> bytes) {
|
|
return encode_value<T>(bytes.data());
|
|
}
|
|
/// Decode a value into its constituent bytes (from most to least significant).
|
|
template<typename T, enable_if_t<std::is_unsigned<T>::value, int> = 0>
|
|
constexpr std::array<uint8_t, sizeof(T)> decode_value(T val) {
|
|
std::array<uint8_t, sizeof(T)> ret{};
|
|
for (size_t i = sizeof(T); i > 0; i--) {
|
|
ret[i - 1] = val & 0xFF;
|
|
val >>= 8;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/// Reverse the order of 8 bits.
|
|
inline uint8_t reverse_bits(uint8_t x) {
|
|
x = ((x & 0xAA) >> 1) | ((x & 0x55) << 1);
|
|
x = ((x & 0xCC) >> 2) | ((x & 0x33) << 2);
|
|
x = ((x & 0xF0) >> 4) | ((x & 0x0F) << 4);
|
|
return x;
|
|
}
|
|
/// Reverse the order of 16 bits.
|
|
inline uint16_t reverse_bits(uint16_t x) {
|
|
return (reverse_bits(static_cast<uint8_t>(x & 0xFF)) << 8) | reverse_bits(static_cast<uint8_t>((x >> 8) & 0xFF));
|
|
}
|
|
/// Reverse the order of 32 bits.
|
|
inline uint32_t reverse_bits(uint32_t x) {
|
|
return (reverse_bits(static_cast<uint16_t>(x & 0xFFFF)) << 16) |
|
|
reverse_bits(static_cast<uint16_t>((x >> 16) & 0xFFFF));
|
|
}
|
|
|
|
/// Convert a value between host byte order and big endian (most significant byte first) order.
|
|
template<typename T> constexpr T convert_big_endian(T val) {
|
|
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
|
|
return byteswap(val);
|
|
#else
|
|
return val;
|
|
#endif
|
|
}
|
|
|
|
/// Convert a value between host byte order and little endian (least significant byte first) order.
|
|
template<typename T> constexpr T convert_little_endian(T val) {
|
|
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
|
|
return val;
|
|
#else
|
|
return byteswap(val);
|
|
#endif
|
|
}
|
|
|
|
///@}
|
|
|
|
/// @name Strings
|
|
///@{
|
|
|
|
/// Compare strings for equality in case-insensitive manner.
|
|
bool str_equals_case_insensitive(const std::string &a, const std::string &b);
|
|
|
|
/// Check whether a string starts with a value.
|
|
bool str_startswith(const std::string &str, const std::string &start);
|
|
/// Check whether a string ends with a value.
|
|
bool str_endswith(const std::string &str, const std::string &end);
|
|
|
|
/// Truncate a string to a specific length.
|
|
std::string str_truncate(const std::string &str, size_t length);
|
|
|
|
/// Extract the part of the string until either the first occurrence of the specified character, or the end
|
|
/// (requires str to be null-terminated).
|
|
std::string str_until(const char *str, char ch);
|
|
/// Extract the part of the string until either the first occurrence of the specified character, or the end.
|
|
std::string str_until(const std::string &str, char ch);
|
|
|
|
/// Convert the string to lower case.
|
|
std::string str_lower_case(const std::string &str);
|
|
/// Convert the string to upper case.
|
|
std::string str_upper_case(const std::string &str);
|
|
/// Convert the string to snake case (lowercase with underscores).
|
|
std::string str_snake_case(const std::string &str);
|
|
|
|
/// Sanitizes the input string by removing all characters but alphanumerics, dashes and underscores.
|
|
std::string str_sanitize(const std::string &str);
|
|
|
|
/// snprintf-like function returning std::string of maximum length \p len (excluding null terminator).
|
|
std::string __attribute__((format(printf, 1, 3))) str_snprintf(const char *fmt, size_t len, ...);
|
|
|
|
/// sprintf-like function returning std::string.
|
|
std::string __attribute__((format(printf, 1, 2))) str_sprintf(const char *fmt, ...);
|
|
|
|
///@}
|
|
|
|
/// @name Parsing & formatting
|
|
///@{
|
|
|
|
/// Parse an unsigned decimal number from a null-terminated string.
|
|
template<typename T, enable_if_t<(std::is_integral<T>::value && std::is_unsigned<T>::value), int> = 0>
|
|
optional<T> parse_number(const char *str) {
|
|
char *end = nullptr;
|
|
unsigned long value = ::strtoul(str, &end, 10); // NOLINT(google-runtime-int)
|
|
if (end == str || *end != '\0' || value > std::numeric_limits<T>::max())
|
|
return {};
|
|
return value;
|
|
}
|
|
/// Parse an unsigned decimal number.
|
|
template<typename T, enable_if_t<(std::is_integral<T>::value && std::is_unsigned<T>::value), int> = 0>
|
|
optional<T> parse_number(const std::string &str) {
|
|
return parse_number<T>(str.c_str());
|
|
}
|
|
/// Parse a signed decimal number from a null-terminated string.
|
|
template<typename T, enable_if_t<(std::is_integral<T>::value && std::is_signed<T>::value), int> = 0>
|
|
optional<T> parse_number(const char *str) {
|
|
char *end = nullptr;
|
|
signed long value = ::strtol(str, &end, 10); // NOLINT(google-runtime-int)
|
|
if (end == str || *end != '\0' || value < std::numeric_limits<T>::min() || value > std::numeric_limits<T>::max())
|
|
return {};
|
|
return value;
|
|
}
|
|
/// Parse a signed decimal number.
|
|
template<typename T, enable_if_t<(std::is_integral<T>::value && std::is_signed<T>::value), int> = 0>
|
|
optional<T> parse_number(const std::string &str) {
|
|
return parse_number<T>(str.c_str());
|
|
}
|
|
/// Parse a decimal floating-point number from a null-terminated string.
|
|
template<typename T, enable_if_t<(std::is_same<T, float>::value), int> = 0> optional<T> parse_number(const char *str) {
|
|
char *end = nullptr;
|
|
float value = ::strtof(str, &end);
|
|
if (end == str || *end != '\0' || value == HUGE_VALF)
|
|
return {};
|
|
return value;
|
|
}
|
|
/// Parse a decimal floating-point number.
|
|
template<typename T, enable_if_t<(std::is_same<T, float>::value), int> = 0>
|
|
optional<T> parse_number(const std::string &str) {
|
|
return parse_number<T>(str.c_str());
|
|
}
|
|
|
|
/** Parse bytes from a hex-encoded string into a byte array.
|
|
*
|
|
* When \p len is less than \p 2*count, the result is written to the back of \p data (i.e. this function treats \p str
|
|
* as if it were padded with zeros at the front).
|
|
*
|
|
* @param str String to read from.
|
|
* @param len Length of \p str (excluding optional null-terminator), is a limit on the number of characters parsed.
|
|
* @param data Byte array to write to.
|
|
* @param count Length of \p data.
|
|
* @return The number of characters parsed from \p str.
|
|
*/
|
|
size_t parse_hex(const char *str, size_t len, uint8_t *data, size_t count);
|
|
/// Parse \p count bytes from the hex-encoded string \p str of at least \p 2*count characters into array \p data.
|
|
inline bool parse_hex(const char *str, uint8_t *data, size_t count) {
|
|
return parse_hex(str, strlen(str), data, count) == 2 * count;
|
|
}
|
|
/// Parse \p count bytes from the hex-encoded string \p str of at least \p 2*count characters into array \p data.
|
|
inline bool parse_hex(const std::string &str, uint8_t *data, size_t count) {
|
|
return parse_hex(str.c_str(), str.length(), data, count) == 2 * count;
|
|
}
|
|
/// Parse \p count bytes from the hex-encoded string \p str of at least \p 2*count characters into vector \p data.
|
|
inline bool parse_hex(const char *str, std::vector<uint8_t> &data, size_t count) {
|
|
data.resize(count);
|
|
return parse_hex(str, strlen(str), data.data(), count) == 2 * count;
|
|
}
|
|
/// Parse \p count bytes from the hex-encoded string \p str of at least \p 2*count characters into vector \p data.
|
|
inline bool parse_hex(const std::string &str, std::vector<uint8_t> &data, size_t count) {
|
|
data.resize(count);
|
|
return parse_hex(str.c_str(), str.length(), data.data(), count) == 2 * count;
|
|
}
|
|
/** Parse a hex-encoded string into an unsigned integer.
|
|
*
|
|
* @param str String to read from, starting with the most significant byte.
|
|
* @param len Length of \p str (excluding optional null-terminator), is a limit on the number of characters parsed.
|
|
*/
|
|
template<typename T, enable_if_t<std::is_unsigned<T>::value, int> = 0>
|
|
optional<T> parse_hex(const char *str, size_t len) {
|
|
T val = 0;
|
|
if (len > 2 * sizeof(T) || parse_hex(str, len, reinterpret_cast<uint8_t *>(&val), sizeof(T)) == 0)
|
|
return {};
|
|
return convert_big_endian(val);
|
|
}
|
|
/// Parse a hex-encoded null-terminated string (starting with the most significant byte) into an unsigned integer.
|
|
template<typename T, enable_if_t<std::is_unsigned<T>::value, int> = 0> optional<T> parse_hex(const char *str) {
|
|
return parse_hex<T>(str, strlen(str));
|
|
}
|
|
/// Parse a hex-encoded null-terminated string (starting with the most significant byte) into an unsigned integer.
|
|
template<typename T, enable_if_t<std::is_unsigned<T>::value, int> = 0> optional<T> parse_hex(const std::string &str) {
|
|
return parse_hex<T>(str.c_str(), str.length());
|
|
}
|
|
|
|
/// Format the six-byte array \p mac into a MAC address.
|
|
std::string format_mac_address_pretty(const uint8_t mac[6]);
|
|
/// Format the byte array \p data of length \p len in lowercased hex.
|
|
std::string format_hex(const uint8_t *data, size_t length);
|
|
/// Format the vector \p data in lowercased hex.
|
|
std::string format_hex(const std::vector<uint8_t> &data);
|
|
/// Format an unsigned integer in lowercased hex, starting with the most significant byte.
|
|
template<typename T, enable_if_t<std::is_unsigned<T>::value, int> = 0> std::string format_hex(T val) {
|
|
val = convert_big_endian(val);
|
|
return format_hex(reinterpret_cast<uint8_t *>(&val), sizeof(T));
|
|
}
|
|
template<std::size_t N> std::string format_hex(const std::array<uint8_t, N> &data) {
|
|
return format_hex(data.data(), data.size());
|
|
}
|
|
|
|
/** Format a byte array in pretty-printed, human-readable hex format.
|
|
*
|
|
* Converts binary data to a hexadecimal string representation with customizable formatting.
|
|
* Each byte is displayed as a two-digit uppercase hex value, separated by the specified separator.
|
|
* Optionally includes the total byte count in parentheses at the end.
|
|
*
|
|
* @param data Pointer to the byte array to format.
|
|
* @param length Number of bytes in the array.
|
|
* @param separator Character to use between hex bytes (default: '.').
|
|
* @param show_length Whether to append the byte count in parentheses (default: true).
|
|
* @return Formatted hex string, e.g., "A1.B2.C3.D4.E5 (5)" or "A1:B2:C3" depending on parameters.
|
|
*
|
|
* @note Returns empty string if data is nullptr or length is 0.
|
|
* @note The length will only be appended if show_length is true AND the length is greater than 4.
|
|
*
|
|
* Example:
|
|
* @code
|
|
* uint8_t data[] = {0xA1, 0xB2, 0xC3};
|
|
* format_hex_pretty(data, 3); // Returns "A1.B2.C3" (no length shown for <= 4 parts)
|
|
* uint8_t data2[] = {0xA1, 0xB2, 0xC3, 0xD4, 0xE5};
|
|
* format_hex_pretty(data2, 5); // Returns "A1.B2.C3.D4.E5 (5)"
|
|
* format_hex_pretty(data2, 5, ':'); // Returns "A1:B2:C3:D4:E5 (5)"
|
|
* format_hex_pretty(data2, 5, '.', false); // Returns "A1.B2.C3.D4.E5"
|
|
* @endcode
|
|
*/
|
|
std::string format_hex_pretty(const uint8_t *data, size_t length, char separator = '.', bool show_length = true);
|
|
|
|
/** Format a 16-bit word array in pretty-printed, human-readable hex format.
|
|
*
|
|
* Similar to the byte array version, but formats 16-bit words as 4-digit hex values.
|
|
*
|
|
* @param data Pointer to the 16-bit word array to format.
|
|
* @param length Number of 16-bit words in the array.
|
|
* @param separator Character to use between hex words (default: '.').
|
|
* @param show_length Whether to append the word count in parentheses (default: true).
|
|
* @return Formatted hex string with 4-digit hex values per word.
|
|
*
|
|
* @note The length will only be appended if show_length is true AND the length is greater than 4.
|
|
*
|
|
* Example:
|
|
* @code
|
|
* uint16_t data[] = {0xA1B2, 0xC3D4};
|
|
* format_hex_pretty(data, 2); // Returns "A1B2.C3D4" (no length shown for <= 4 parts)
|
|
* uint16_t data2[] = {0xA1B2, 0xC3D4, 0xE5F6};
|
|
* format_hex_pretty(data2, 3); // Returns "A1B2.C3D4.E5F6 (3)"
|
|
* @endcode
|
|
*/
|
|
std::string format_hex_pretty(const uint16_t *data, size_t length, char separator = '.', bool show_length = true);
|
|
|
|
/** Format a byte vector in pretty-printed, human-readable hex format.
|
|
*
|
|
* Convenience overload for std::vector<uint8_t>. Formats each byte as a two-digit
|
|
* uppercase hex value with customizable separator.
|
|
*
|
|
* @param data Vector of bytes to format.
|
|
* @param separator Character to use between hex bytes (default: '.').
|
|
* @param show_length Whether to append the byte count in parentheses (default: true).
|
|
* @return Formatted hex string representation of the vector contents.
|
|
*
|
|
* @note The length will only be appended if show_length is true AND the vector size is greater than 4.
|
|
*
|
|
* Example:
|
|
* @code
|
|
* std::vector<uint8_t> data = {0xDE, 0xAD, 0xBE, 0xEF};
|
|
* format_hex_pretty(data); // Returns "DE.AD.BE.EF" (no length shown for <= 4 parts)
|
|
* std::vector<uint8_t> data2 = {0xDE, 0xAD, 0xBE, 0xEF, 0xCA};
|
|
* format_hex_pretty(data2); // Returns "DE.AD.BE.EF.CA (5)"
|
|
* format_hex_pretty(data2, '-'); // Returns "DE-AD-BE-EF-CA (5)"
|
|
* @endcode
|
|
*/
|
|
std::string format_hex_pretty(const std::vector<uint8_t> &data, char separator = '.', bool show_length = true);
|
|
|
|
/** Format a 16-bit word vector in pretty-printed, human-readable hex format.
|
|
*
|
|
* Convenience overload for std::vector<uint16_t>. Each 16-bit word is formatted
|
|
* as a 4-digit uppercase hex value in big-endian order.
|
|
*
|
|
* @param data Vector of 16-bit words to format.
|
|
* @param separator Character to use between hex words (default: '.').
|
|
* @param show_length Whether to append the word count in parentheses (default: true).
|
|
* @return Formatted hex string representation of the vector contents.
|
|
*
|
|
* @note The length will only be appended if show_length is true AND the vector size is greater than 4.
|
|
*
|
|
* Example:
|
|
* @code
|
|
* std::vector<uint16_t> data = {0x1234, 0x5678};
|
|
* format_hex_pretty(data); // Returns "1234.5678" (no length shown for <= 4 parts)
|
|
* std::vector<uint16_t> data2 = {0x1234, 0x5678, 0x9ABC};
|
|
* format_hex_pretty(data2); // Returns "1234.5678.9ABC (3)"
|
|
* @endcode
|
|
*/
|
|
std::string format_hex_pretty(const std::vector<uint16_t> &data, char separator = '.', bool show_length = true);
|
|
|
|
/** Format a string's bytes in pretty-printed, human-readable hex format.
|
|
*
|
|
* Treats each character in the string as a byte and formats it in hex.
|
|
* Useful for debugging binary data stored in std::string containers.
|
|
*
|
|
* @param data String whose bytes should be formatted as hex.
|
|
* @param separator Character to use between hex bytes (default: '.').
|
|
* @param show_length Whether to append the byte count in parentheses (default: true).
|
|
* @return Formatted hex string representation of the string's byte contents.
|
|
*
|
|
* @note The length will only be appended if show_length is true AND the string length is greater than 4.
|
|
*
|
|
* Example:
|
|
* @code
|
|
* std::string data = "ABC"; // ASCII: 0x41, 0x42, 0x43
|
|
* format_hex_pretty(data); // Returns "41.42.43" (no length shown for <= 4 parts)
|
|
* std::string data2 = "ABCDE";
|
|
* format_hex_pretty(data2); // Returns "41.42.43.44.45 (5)"
|
|
* @endcode
|
|
*/
|
|
std::string format_hex_pretty(const std::string &data, char separator = '.', bool show_length = true);
|
|
|
|
/** Format an unsigned integer in pretty-printed, human-readable hex format.
|
|
*
|
|
* Converts the integer to big-endian byte order and formats each byte as hex.
|
|
* The most significant byte appears first in the output string.
|
|
*
|
|
* @tparam T Unsigned integer type (uint8_t, uint16_t, uint32_t, uint64_t, etc.).
|
|
* @param val The unsigned integer value to format.
|
|
* @param separator Character to use between hex bytes (default: '.').
|
|
* @param show_length Whether to append the byte count in parentheses (default: true).
|
|
* @return Formatted hex string with most significant byte first.
|
|
*
|
|
* @note The length will only be appended if show_length is true AND sizeof(T) is greater than 4.
|
|
*
|
|
* Example:
|
|
* @code
|
|
* uint32_t value = 0x12345678;
|
|
* format_hex_pretty(value); // Returns "12.34.56.78" (no length shown for <= 4 parts)
|
|
* uint64_t value2 = 0x123456789ABCDEF0;
|
|
* format_hex_pretty(value2); // Returns "12.34.56.78.9A.BC.DE.F0 (8)"
|
|
* format_hex_pretty(value2, ':'); // Returns "12:34:56:78:9A:BC:DE:F0 (8)"
|
|
* format_hex_pretty<uint16_t>(0x1234); // Returns "12.34"
|
|
* @endcode
|
|
*/
|
|
template<typename T, enable_if_t<std::is_unsigned<T>::value, int> = 0>
|
|
std::string format_hex_pretty(T val, char separator = '.', bool show_length = true) {
|
|
val = convert_big_endian(val);
|
|
return format_hex_pretty(reinterpret_cast<uint8_t *>(&val), sizeof(T), separator, show_length);
|
|
}
|
|
|
|
/// Format the byte array \p data of length \p len in binary.
|
|
std::string format_bin(const uint8_t *data, size_t length);
|
|
/// Format an unsigned integer in binary, starting with the most significant byte.
|
|
template<typename T, enable_if_t<std::is_unsigned<T>::value, int> = 0> std::string format_bin(T val) {
|
|
val = convert_big_endian(val);
|
|
return format_bin(reinterpret_cast<uint8_t *>(&val), sizeof(T));
|
|
}
|
|
|
|
/// Return values for parse_on_off().
|
|
enum ParseOnOffState : uint8_t {
|
|
PARSE_NONE = 0,
|
|
PARSE_ON,
|
|
PARSE_OFF,
|
|
PARSE_TOGGLE,
|
|
};
|
|
/// Parse a string that contains either on, off or toggle.
|
|
ParseOnOffState parse_on_off(const char *str, const char *on = nullptr, const char *off = nullptr);
|
|
|
|
/// Create a string from a value and an accuracy in decimals.
|
|
std::string value_accuracy_to_string(float value, int8_t accuracy_decimals);
|
|
|
|
/// Derive accuracy in decimals from an increment step.
|
|
int8_t step_to_accuracy_decimals(float step);
|
|
|
|
std::string base64_encode(const uint8_t *buf, size_t buf_len);
|
|
std::string base64_encode(const std::vector<uint8_t> &buf);
|
|
|
|
std::vector<uint8_t> base64_decode(const std::string &encoded_string);
|
|
size_t base64_decode(std::string const &encoded_string, uint8_t *buf, size_t buf_len);
|
|
|
|
///@}
|
|
|
|
/// @name Colors
|
|
///@{
|
|
|
|
/// Applies gamma correction of \p gamma to \p value.
|
|
float gamma_correct(float value, float gamma);
|
|
/// Reverts gamma correction of \p gamma to \p value.
|
|
float gamma_uncorrect(float value, float gamma);
|
|
|
|
/// Convert \p red, \p green and \p blue (all 0-1) values to \p hue (0-360), \p saturation (0-1) and \p value (0-1).
|
|
void rgb_to_hsv(float red, float green, float blue, int &hue, float &saturation, float &value);
|
|
/// Convert \p hue (0-360), \p saturation (0-1) and \p value (0-1) to \p red, \p green and \p blue (all 0-1).
|
|
void hsv_to_rgb(int hue, float saturation, float value, float &red, float &green, float &blue);
|
|
|
|
///@}
|
|
|
|
/// @name Units
|
|
///@{
|
|
|
|
/// Convert degrees Celsius to degrees Fahrenheit.
|
|
constexpr float celsius_to_fahrenheit(float value) { return value * 1.8f + 32.0f; }
|
|
/// Convert degrees Fahrenheit to degrees Celsius.
|
|
constexpr float fahrenheit_to_celsius(float value) { return (value - 32.0f) / 1.8f; }
|
|
|
|
///@}
|
|
|
|
/// @name Utilities
|
|
/// @{
|
|
|
|
template<typename... X> class CallbackManager;
|
|
|
|
/** Helper class to allow having multiple subscribers to a callback.
|
|
*
|
|
* @tparam Ts The arguments for the callbacks, wrapped in void().
|
|
*/
|
|
template<typename... Ts> class CallbackManager<void(Ts...)> {
|
|
public:
|
|
/// Add a callback to the list.
|
|
void add(std::function<void(Ts...)> &&callback) { this->callbacks_.push_back(std::move(callback)); }
|
|
|
|
/// Call all callbacks in this manager.
|
|
void call(Ts... args) {
|
|
for (auto &cb : this->callbacks_)
|
|
cb(args...);
|
|
}
|
|
size_t size() const { return this->callbacks_.size(); }
|
|
|
|
/// Call all callbacks in this manager.
|
|
void operator()(Ts... args) { call(args...); }
|
|
|
|
protected:
|
|
std::vector<std::function<void(Ts...)>> callbacks_;
|
|
};
|
|
|
|
/// Helper class to deduplicate items in a series of values.
|
|
template<typename T> class Deduplicator {
|
|
public:
|
|
/// Feeds the next item in the series to the deduplicator and returns whether this is a duplicate.
|
|
bool next(T value) {
|
|
if (this->has_value_) {
|
|
if (this->last_value_ == value)
|
|
return false;
|
|
}
|
|
this->has_value_ = true;
|
|
this->last_value_ = value;
|
|
return true;
|
|
}
|
|
/// Returns whether this deduplicator has processed any items so far.
|
|
bool has_value() const { return this->has_value_; }
|
|
|
|
protected:
|
|
bool has_value_{false};
|
|
T last_value_{};
|
|
};
|
|
|
|
/// Helper class to easily give an object a parent of type \p T.
|
|
template<typename T> class Parented {
|
|
public:
|
|
Parented() {}
|
|
Parented(T *parent) : parent_(parent) {}
|
|
|
|
/// Get the parent of this object.
|
|
T *get_parent() const { return parent_; }
|
|
/// Set the parent of this object.
|
|
void set_parent(T *parent) { parent_ = parent; }
|
|
|
|
protected:
|
|
T *parent_{nullptr};
|
|
};
|
|
|
|
/// @}
|
|
|
|
/// @name System APIs
|
|
///@{
|
|
|
|
/** Mutex implementation, with API based on the unavailable std::mutex.
|
|
*
|
|
* @note This mutex is non-recursive, so take care not to try to obtain the mutex while it is already taken.
|
|
*/
|
|
class Mutex {
|
|
public:
|
|
Mutex();
|
|
Mutex(const Mutex &) = delete;
|
|
~Mutex();
|
|
void lock();
|
|
bool try_lock();
|
|
void unlock();
|
|
|
|
Mutex &operator=(const Mutex &) = delete;
|
|
|
|
private:
|
|
#if defined(USE_ESP32) || defined(USE_LIBRETINY)
|
|
SemaphoreHandle_t handle_;
|
|
#else
|
|
// d-pointer to store private data on new platforms
|
|
void *handle_; // NOLINT(clang-diagnostic-unused-private-field)
|
|
#endif
|
|
};
|
|
|
|
/** Helper class that wraps a mutex with a RAII-style API.
|
|
*
|
|
* This behaves like std::lock_guard: as long as the object is alive, the mutex is held.
|
|
*/
|
|
class LockGuard {
|
|
public:
|
|
LockGuard(Mutex &mutex) : mutex_(mutex) { mutex_.lock(); }
|
|
~LockGuard() { mutex_.unlock(); }
|
|
|
|
private:
|
|
Mutex &mutex_;
|
|
};
|
|
|
|
/** Helper class to disable interrupts.
|
|
*
|
|
* This behaves like std::lock_guard: as long as the object is alive, all interrupts are disabled.
|
|
*
|
|
* Please note all functions called when the interrupt lock must be marked IRAM_ATTR (loading code into
|
|
* instruction cache is done via interrupts; disabling interrupts prevents data not already in cache from being
|
|
* pulled from flash).
|
|
*
|
|
* Example usage:
|
|
*
|
|
* \code{.cpp}
|
|
* // interrupts are enabled
|
|
* {
|
|
* InterruptLock lock;
|
|
* // do something
|
|
* // interrupts are disabled
|
|
* }
|
|
* // interrupts are enabled
|
|
* \endcode
|
|
*/
|
|
class InterruptLock {
|
|
public:
|
|
InterruptLock();
|
|
~InterruptLock();
|
|
|
|
protected:
|
|
#if defined(USE_ESP8266) || defined(USE_RP2040) || defined(USE_ZEPHYR)
|
|
uint32_t state_;
|
|
#endif
|
|
};
|
|
|
|
/** Helper class to lock the lwIP TCPIP core when making lwIP API calls from non-TCPIP threads.
|
|
*
|
|
* This is needed on multi-threaded platforms (ESP32) when CONFIG_LWIP_TCPIP_CORE_LOCKING is enabled.
|
|
* It ensures thread-safe access to lwIP APIs.
|
|
*
|
|
* @note This follows the same pattern as InterruptLock - platform-specific implementations in helpers.cpp
|
|
*/
|
|
class LwIPLock {
|
|
public:
|
|
LwIPLock();
|
|
~LwIPLock();
|
|
|
|
// Delete copy constructor and copy assignment operator to prevent accidental copying
|
|
LwIPLock(const LwIPLock &) = delete;
|
|
LwIPLock &operator=(const LwIPLock &) = delete;
|
|
};
|
|
|
|
/** Helper class to request `loop()` to be called as fast as possible.
|
|
*
|
|
* Usually the ESPHome main loop runs at 60 Hz, sleeping in between invocations of `loop()` if necessary. When a higher
|
|
* execution frequency is necessary, you can use this class to make the loop run continuously without waiting.
|
|
*/
|
|
class HighFrequencyLoopRequester {
|
|
public:
|
|
/// Start running the loop continuously.
|
|
void start();
|
|
/// Stop running the loop continuously.
|
|
void stop();
|
|
|
|
/// Check whether the loop is running continuously.
|
|
static bool is_high_frequency();
|
|
|
|
protected:
|
|
bool started_{false};
|
|
static uint8_t num_requests; // NOLINT(cppcoreguidelines-avoid-non-const-global-variables)
|
|
};
|
|
|
|
/// Get the device MAC address as raw bytes, written into the provided byte array (6 bytes).
|
|
void get_mac_address_raw(uint8_t *mac); // NOLINT(readability-non-const-parameter)
|
|
|
|
/// Get the device MAC address as a string, in lowercase hex notation.
|
|
std::string get_mac_address();
|
|
|
|
/// Get the device MAC address as a string, in colon-separated uppercase hex notation.
|
|
std::string get_mac_address_pretty();
|
|
|
|
#ifdef USE_ESP32
|
|
/// Set the MAC address to use from the provided byte array (6 bytes).
|
|
void set_mac_address(uint8_t *mac);
|
|
#endif
|
|
|
|
/// Check if a custom MAC address is set (ESP32 & variants)
|
|
/// @return True if a custom MAC address is set (ESP32 & variants), else false
|
|
bool has_custom_mac_address();
|
|
|
|
/// Check if the MAC address is not all zeros or all ones
|
|
/// @return True if MAC is valid, else false
|
|
bool mac_address_is_valid(const uint8_t *mac);
|
|
|
|
/// Delay for the given amount of microseconds, possibly yielding to other processes during the wait.
|
|
void delay_microseconds_safe(uint32_t us);
|
|
|
|
///@}
|
|
|
|
/// @name Memory management
|
|
///@{
|
|
|
|
/** An STL allocator that uses SPI or internal RAM.
|
|
* Returns `nullptr` in case no memory is available.
|
|
*
|
|
* By setting flags, it can be configured to:
|
|
* - perform external allocation falling back to main memory if SPI RAM is full or unavailable
|
|
* - perform external allocation only
|
|
* - perform internal allocation only
|
|
*/
|
|
template<class T> class RAMAllocator {
|
|
public:
|
|
using value_type = T;
|
|
|
|
enum Flags {
|
|
NONE = 0, // Perform external allocation and fall back to internal memory
|
|
ALLOC_EXTERNAL = 1 << 0, // Perform external allocation only.
|
|
ALLOC_INTERNAL = 1 << 1, // Perform internal allocation only.
|
|
ALLOW_FAILURE = 1 << 2, // Does nothing. Kept for compatibility.
|
|
};
|
|
|
|
RAMAllocator() = default;
|
|
RAMAllocator(uint8_t flags) {
|
|
// default is both external and internal
|
|
flags &= ALLOC_INTERNAL | ALLOC_EXTERNAL;
|
|
if (flags != 0)
|
|
this->flags_ = flags;
|
|
}
|
|
template<class U> constexpr RAMAllocator(const RAMAllocator<U> &other) : flags_{other.flags_} {}
|
|
|
|
T *allocate(size_t n) { return this->allocate(n, sizeof(T)); }
|
|
|
|
T *allocate(size_t n, size_t manual_size) {
|
|
size_t size = n * manual_size;
|
|
T *ptr = nullptr;
|
|
#ifdef USE_ESP32
|
|
if (this->flags_ & Flags::ALLOC_EXTERNAL) {
|
|
ptr = static_cast<T *>(heap_caps_malloc(size, MALLOC_CAP_SPIRAM | MALLOC_CAP_8BIT));
|
|
}
|
|
if (ptr == nullptr && this->flags_ & Flags::ALLOC_INTERNAL) {
|
|
ptr = static_cast<T *>(heap_caps_malloc(size, MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT));
|
|
}
|
|
#else
|
|
// Ignore ALLOC_EXTERNAL/ALLOC_INTERNAL flags if external allocation is not supported
|
|
ptr = static_cast<T *>(malloc(size)); // NOLINT(cppcoreguidelines-owning-memory,cppcoreguidelines-no-malloc)
|
|
#endif
|
|
return ptr;
|
|
}
|
|
|
|
T *reallocate(T *p, size_t n) { return this->reallocate(p, n, sizeof(T)); }
|
|
|
|
T *reallocate(T *p, size_t n, size_t manual_size) {
|
|
size_t size = n * manual_size;
|
|
T *ptr = nullptr;
|
|
#ifdef USE_ESP32
|
|
if (this->flags_ & Flags::ALLOC_EXTERNAL) {
|
|
ptr = static_cast<T *>(heap_caps_realloc(p, size, MALLOC_CAP_SPIRAM | MALLOC_CAP_8BIT));
|
|
}
|
|
if (ptr == nullptr && this->flags_ & Flags::ALLOC_INTERNAL) {
|
|
ptr = static_cast<T *>(heap_caps_realloc(p, size, MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT));
|
|
}
|
|
#else
|
|
// Ignore ALLOC_EXTERNAL/ALLOC_INTERNAL flags if external allocation is not supported
|
|
ptr = static_cast<T *>(realloc(p, size)); // NOLINT(cppcoreguidelines-owning-memory,cppcoreguidelines-no-malloc)
|
|
#endif
|
|
return ptr;
|
|
}
|
|
|
|
void deallocate(T *p, size_t n) {
|
|
free(p); // NOLINT(cppcoreguidelines-owning-memory,cppcoreguidelines-no-malloc)
|
|
}
|
|
|
|
/**
|
|
* Return the total heap space available via this allocator
|
|
*/
|
|
size_t get_free_heap_size() const {
|
|
#ifdef USE_ESP8266
|
|
return ESP.getFreeHeap(); // NOLINT(readability-static-accessed-through-instance)
|
|
#elif defined(USE_ESP32)
|
|
auto max_internal =
|
|
this->flags_ & ALLOC_INTERNAL ? heap_caps_get_free_size(MALLOC_CAP_8BIT | MALLOC_CAP_INTERNAL) : 0;
|
|
auto max_external =
|
|
this->flags_ & ALLOC_EXTERNAL ? heap_caps_get_free_size(MALLOC_CAP_8BIT | MALLOC_CAP_SPIRAM) : 0;
|
|
return max_internal + max_external;
|
|
#elif defined(USE_RP2040)
|
|
return ::rp2040.getFreeHeap();
|
|
#elif defined(USE_LIBRETINY)
|
|
return lt_heap_get_free();
|
|
#else
|
|
return 100000;
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* Return the maximum size block this allocator could allocate. This may be an approximation on some platforms
|
|
*/
|
|
size_t get_max_free_block_size() const {
|
|
#ifdef USE_ESP8266
|
|
return ESP.getMaxFreeBlockSize(); // NOLINT(readability-static-accessed-through-instance)
|
|
#elif defined(USE_ESP32)
|
|
auto max_internal =
|
|
this->flags_ & ALLOC_INTERNAL ? heap_caps_get_largest_free_block(MALLOC_CAP_8BIT | MALLOC_CAP_INTERNAL) : 0;
|
|
auto max_external =
|
|
this->flags_ & ALLOC_EXTERNAL ? heap_caps_get_largest_free_block(MALLOC_CAP_8BIT | MALLOC_CAP_SPIRAM) : 0;
|
|
return std::max(max_internal, max_external);
|
|
#else
|
|
return this->get_free_heap_size();
|
|
#endif
|
|
}
|
|
|
|
private:
|
|
uint8_t flags_{ALLOC_INTERNAL | ALLOC_EXTERNAL};
|
|
};
|
|
|
|
template<class T> using ExternalRAMAllocator = RAMAllocator<T>;
|
|
|
|
/// @}
|
|
|
|
/// @name Internal functions
|
|
///@{
|
|
|
|
/** Helper function to make `id(var)` known from lambdas work in custom components.
|
|
*
|
|
* This function is not called from lambdas, the code generator replaces calls to it with the appropriate variable.
|
|
*/
|
|
template<typename T, enable_if_t<!std::is_pointer<T>::value, int> = 0> T id(T value) { return value; }
|
|
/** Helper function to make `id(var)` known from lambdas work in custom components.
|
|
*
|
|
* This function is not called from lambdas, the code generator replaces calls to it with the appropriate variable.
|
|
*/
|
|
template<typename T, enable_if_t<std::is_pointer<T *>::value, int> = 0> T &id(T *value) { return *value; }
|
|
|
|
///@}
|
|
|
|
/// @name Deprecated functions
|
|
///@{
|
|
|
|
ESPDEPRECATED("hexencode() is deprecated, use format_hex_pretty() instead.", "2022.1")
|
|
inline std::string hexencode(const uint8_t *data, uint32_t len) { return format_hex_pretty(data, len); }
|
|
|
|
template<typename T>
|
|
ESPDEPRECATED("hexencode() is deprecated, use format_hex_pretty() instead.", "2022.1")
|
|
std::string hexencode(const T &data) {
|
|
return hexencode(data.data(), data.size());
|
|
}
|
|
|
|
///@}
|
|
|
|
} // namespace esphome
|