1
0
mirror of https://github.com/esphome/esphome.git synced 2025-10-08 04:43:46 +01:00
Files
esphome/esphome/components/remote_receiver/remote_receiver_esp32.cpp
2025-10-06 13:24:58 -04:00

255 lines
9.5 KiB
C++

#include "remote_receiver.h"
#include "esphome/core/log.h"
#ifdef USE_ESP32
#include <driver/gpio.h>
namespace esphome {
namespace remote_receiver {
static const char *const TAG = "remote_receiver.esp32";
#ifdef USE_ESP32_VARIANT_ESP32H2
static const uint32_t RMT_CLK_FREQ = 32000000;
#else
static const uint32_t RMT_CLK_FREQ = 80000000;
#endif
static bool IRAM_ATTR HOT rmt_callback(rmt_channel_handle_t channel, const rmt_rx_done_event_data_t *event, void *arg) {
RemoteReceiverComponentStore *store = (RemoteReceiverComponentStore *) arg;
rmt_rx_done_event_data_t *event_buffer = (rmt_rx_done_event_data_t *) (store->buffer + store->buffer_write);
uint32_t event_size = sizeof(rmt_rx_done_event_data_t);
uint32_t next_write = store->buffer_write + event_size + event->num_symbols * sizeof(rmt_symbol_word_t);
if (next_write + event_size + store->receive_size > store->buffer_size) {
next_write = 0;
}
if (store->buffer_read - next_write < event_size + store->receive_size) {
next_write = store->buffer_write;
store->overflow = true;
}
if (event->num_symbols <= store->filter_symbols) {
next_write = store->buffer_write;
}
store->error =
rmt_receive(channel, (uint8_t *) store->buffer + next_write + event_size, store->receive_size, &store->config);
event_buffer->num_symbols = event->num_symbols;
event_buffer->received_symbols = event->received_symbols;
store->buffer_write = next_write;
return false;
}
void RemoteReceiverComponent::setup() {
rmt_rx_channel_config_t channel;
memset(&channel, 0, sizeof(channel));
channel.clk_src = RMT_CLK_SRC_DEFAULT;
channel.resolution_hz = this->clock_resolution_;
channel.mem_block_symbols = rmt_symbols_;
channel.gpio_num = gpio_num_t(this->pin_->get_pin());
channel.intr_priority = 0;
channel.flags.invert_in = 0;
channel.flags.with_dma = this->with_dma_;
channel.flags.io_loop_back = 0;
esp_err_t error = rmt_new_rx_channel(&channel, &this->channel_);
if (error != ESP_OK) {
this->error_code_ = error;
if (error == ESP_ERR_NOT_FOUND) {
this->error_string_ = "out of RMT symbol memory";
} else {
this->error_string_ = "in rmt_new_rx_channel";
}
this->mark_failed();
return;
}
if (this->pin_->get_flags() & gpio::FLAG_PULLUP) {
gpio_pullup_en(gpio_num_t(this->pin_->get_pin()));
} else {
gpio_pullup_dis(gpio_num_t(this->pin_->get_pin()));
}
error = rmt_enable(this->channel_);
if (error != ESP_OK) {
this->error_code_ = error;
this->error_string_ = "in rmt_enable";
this->mark_failed();
return;
}
if (this->carrier_frequency_ > 0 && 0 < this->carrier_duty_percent_ && this->carrier_duty_percent_ < 100) {
rmt_carrier_config_t carrier;
memset(&carrier, 0, sizeof(carrier));
carrier.frequency_hz = this->carrier_frequency_;
carrier.duty_cycle = (float) this->carrier_duty_percent_ / 100.0f;
carrier.flags.polarity_active_low = this->pin_->is_inverted();
error = rmt_apply_carrier(this->channel_, &carrier);
if (error != ESP_OK) {
this->error_code_ = error;
this->error_string_ = "in rmt_apply_carrier";
this->mark_failed();
return;
}
}
rmt_rx_event_callbacks_t callbacks;
memset(&callbacks, 0, sizeof(callbacks));
callbacks.on_recv_done = rmt_callback;
error = rmt_rx_register_event_callbacks(this->channel_, &callbacks, &this->store_);
if (error != ESP_OK) {
this->error_code_ = error;
this->error_string_ = "in rmt_rx_register_event_callbacks";
this->mark_failed();
return;
}
uint32_t event_size = sizeof(rmt_rx_done_event_data_t);
uint32_t max_filter_ns = 255u * 1000 / (RMT_CLK_FREQ / 1000000);
memset(&this->store_.config, 0, sizeof(this->store_.config));
this->store_.config.signal_range_min_ns = std::min(this->filter_us_ * 1000, max_filter_ns);
this->store_.config.signal_range_max_ns = this->idle_us_ * 1000;
this->store_.filter_symbols = this->filter_symbols_;
this->store_.receive_size = this->receive_symbols_ * sizeof(rmt_symbol_word_t);
this->store_.buffer_size = std::max((event_size + this->store_.receive_size) * 2, this->buffer_size_);
this->store_.buffer = new uint8_t[this->buffer_size_];
error = rmt_receive(this->channel_, (uint8_t *) this->store_.buffer + event_size, this->store_.receive_size,
&this->store_.config);
if (error != ESP_OK) {
this->error_code_ = error;
this->error_string_ = "in rmt_receive";
this->mark_failed();
return;
}
}
void RemoteReceiverComponent::dump_config() {
ESP_LOGCONFIG(TAG, "Remote Receiver:");
LOG_PIN(" Pin: ", this->pin_);
ESP_LOGCONFIG(TAG,
" Clock resolution: %" PRIu32 " hz\n"
" RMT symbols: %" PRIu32 "\n"
" Filter symbols: %" PRIu32 "\n"
" Receive symbols: %" PRIu32 "\n"
" Tolerance: %" PRIu32 "%s\n"
" Carrier frequency: %" PRIu32 " hz\n"
" Carrier duty: %u%%\n"
" Filter out pulses shorter than: %" PRIu32 " us\n"
" Signal is done after %" PRIu32 " us of no changes",
this->clock_resolution_, this->rmt_symbols_, this->filter_symbols_, this->receive_symbols_,
this->tolerance_, (this->tolerance_mode_ == remote_base::TOLERANCE_MODE_TIME) ? " us" : "%",
this->carrier_frequency_, this->carrier_duty_percent_, this->filter_us_, this->idle_us_);
if (this->is_failed()) {
ESP_LOGE(TAG, "Configuring RMT driver failed: %s (%s)", esp_err_to_name(this->error_code_),
this->error_string_.c_str());
}
}
void RemoteReceiverComponent::loop() {
if (this->store_.error != ESP_OK) {
ESP_LOGE(TAG, "Receive error");
this->error_code_ = this->store_.error;
this->error_string_ = "in rmt_callback";
this->mark_failed();
}
if (this->store_.overflow) {
ESP_LOGW(TAG, "Buffer overflow");
this->store_.overflow = false;
}
uint32_t buffer_write = this->store_.buffer_write;
while (this->store_.buffer_read != buffer_write) {
rmt_rx_done_event_data_t *event = (rmt_rx_done_event_data_t *) (this->store_.buffer + this->store_.buffer_read);
uint32_t event_size = sizeof(rmt_rx_done_event_data_t);
uint32_t next_read = this->store_.buffer_read + event_size + event->num_symbols * sizeof(rmt_symbol_word_t);
if (next_read + event_size + this->store_.receive_size > this->store_.buffer_size) {
next_read = 0;
}
this->decode_rmt_(event->received_symbols, event->num_symbols);
this->store_.buffer_read = next_read;
if (!this->temp_.empty()) {
this->call_listeners_dumpers_();
}
}
}
void RemoteReceiverComponent::decode_rmt_(rmt_symbol_word_t *item, size_t item_count) {
bool prev_level = false;
bool idle_level = false;
uint32_t prev_length = 0;
this->temp_.clear();
int32_t multiplier = this->pin_->is_inverted() ? -1 : 1;
uint32_t filter_ticks = this->from_microseconds_(this->filter_us_);
ESP_LOGVV(TAG, "START:");
for (size_t i = 0; i < item_count; i++) {
if (item[i].level0) {
ESP_LOGVV(TAG, "%zu A: ON %" PRIu32 "us (%u ticks)", i, this->to_microseconds_(item[i].duration0),
item[i].duration0);
} else {
ESP_LOGVV(TAG, "%zu A: OFF %" PRIu32 "us (%u ticks)", i, this->to_microseconds_(item[i].duration0),
item[i].duration0);
}
if (item[i].level1) {
ESP_LOGVV(TAG, "%zu B: ON %" PRIu32 "us (%u ticks)", i, this->to_microseconds_(item[i].duration1),
item[i].duration1);
} else {
ESP_LOGVV(TAG, "%zu B: OFF %" PRIu32 "us (%u ticks)", i, this->to_microseconds_(item[i].duration1),
item[i].duration1);
}
}
ESP_LOGVV(TAG, "\n");
this->temp_.reserve(item_count * 2); // each RMT item has 2 pulses
for (size_t i = 0; i < item_count; i++) {
if (item[i].duration0 == 0u) {
// EOF, sometimes garbage follows, break early
break;
} else if ((bool(item[i].level0) == prev_level) || (item[i].duration0 < filter_ticks)) {
prev_length += item[i].duration0;
} else {
if (prev_length >= filter_ticks) {
if (prev_level) {
this->temp_.push_back(this->to_microseconds_(prev_length) * multiplier);
} else {
this->temp_.push_back(-int32_t(this->to_microseconds_(prev_length)) * multiplier);
}
}
prev_level = bool(item[i].level0);
prev_length = item[i].duration0;
}
idle_level = !bool(item[i].level0);
if (item[i].duration1 == 0u) {
// EOF, sometimes garbage follows, break early
break;
} else if ((bool(item[i].level1) == prev_level) || (item[i].duration1 < filter_ticks)) {
prev_length += item[i].duration1;
} else {
if (prev_length >= filter_ticks) {
if (prev_level) {
this->temp_.push_back(this->to_microseconds_(prev_length) * multiplier);
} else {
this->temp_.push_back(-int32_t(this->to_microseconds_(prev_length)) * multiplier);
}
}
prev_level = bool(item[i].level1);
prev_length = item[i].duration1;
}
idle_level = !bool(item[i].level1);
}
if (prev_length >= filter_ticks && prev_level != idle_level) {
if (prev_level) {
this->temp_.push_back(this->to_microseconds_(prev_length) * multiplier);
} else {
this->temp_.push_back(-int32_t(this->to_microseconds_(prev_length)) * multiplier);
}
}
if (!this->temp_.empty()) {
if (idle_level) {
this->temp_.push_back(this->idle_us_ * multiplier);
} else {
this->temp_.push_back(-int32_t(this->idle_us_) * multiplier);
}
}
}
} // namespace remote_receiver
} // namespace esphome
#endif