1
0
mirror of https://github.com/esphome/esphome.git synced 2025-10-29 06:04:01 +00:00
Files
esphome/esphome/components/toshiba/toshiba.cpp
J. Nick Koston 7310d75579 minimize changes
2025-10-21 22:39:11 -10:00

1369 lines
47 KiB
C++

#include "toshiba.h"
#include "esphome/components/remote_base/toshiba_ac_protocol.h"
#include <vector>
namespace esphome {
namespace toshiba {
struct RacPt1411hwruFanSpeed {
uint8_t code1;
uint8_t code2;
};
static const char *const TAG = "toshiba.climate";
// Timings for IR bits/data
const uint16_t TOSHIBA_HEADER_MARK = 4380;
const uint16_t TOSHIBA_HEADER_SPACE = 4370;
const uint16_t TOSHIBA_GAP_SPACE = 5480;
const uint16_t TOSHIBA_PACKET_SPACE = 10500;
const uint16_t TOSHIBA_BIT_MARK = 540;
const uint16_t TOSHIBA_ZERO_SPACE = 540;
const uint16_t TOSHIBA_ONE_SPACE = 1620;
const uint16_t TOSHIBA_CARRIER_FREQUENCY = 38000;
const uint8_t TOSHIBA_HEADER_LENGTH = 4;
// Generic Toshiba commands/flags
const uint8_t TOSHIBA_COMMAND_DEFAULT = 0x01;
const uint8_t TOSHIBA_COMMAND_TIMER = 0x02;
const uint8_t TOSHIBA_COMMAND_POWER = 0x08;
const uint8_t TOSHIBA_COMMAND_MOTION = 0x02;
const uint8_t TOSHIBA_MODE_AUTO = 0x00;
const uint8_t TOSHIBA_MODE_COOL = 0x01;
const uint8_t TOSHIBA_MODE_DRY = 0x02;
const uint8_t TOSHIBA_MODE_HEAT = 0x03;
const uint8_t TOSHIBA_MODE_FAN_ONLY = 0x04;
const uint8_t TOSHIBA_MODE_OFF = 0x07;
const uint8_t TOSHIBA_FAN_SPEED_AUTO = 0x00;
const uint8_t TOSHIBA_FAN_SPEED_QUIET = 0x20;
const uint8_t TOSHIBA_FAN_SPEED_1 = 0x40;
const uint8_t TOSHIBA_FAN_SPEED_2 = 0x60;
const uint8_t TOSHIBA_FAN_SPEED_3 = 0x80;
const uint8_t TOSHIBA_FAN_SPEED_4 = 0xa0;
const uint8_t TOSHIBA_FAN_SPEED_5 = 0xc0;
const uint8_t TOSHIBA_POWER_HIGH = 0x01;
const uint8_t TOSHIBA_POWER_ECO = 0x03;
const uint8_t TOSHIBA_MOTION_SWING = 0x04;
const uint8_t TOSHIBA_MOTION_FIX = 0x00;
// RAC-PT1411HWRU temperature code flag bits
const uint8_t RAC_PT1411HWRU_FLAG_FAH = 0x01;
const uint8_t RAC_PT1411HWRU_FLAG_FRAC = 0x20;
const uint8_t RAC_PT1411HWRU_FLAG_NEG = 0x10;
// RAC-PT1411HWRU temperature short code flags mask
const uint8_t RAC_PT1411HWRU_FLAG_MASK = 0x0F;
// RAC-PT1411HWRU Headers, Footers and such
const uint8_t RAC_PT1411HWRU_MESSAGE_HEADER0 = 0xB2;
const uint8_t RAC_PT1411HWRU_MESSAGE_HEADER1 = 0xD5;
const uint8_t RAC_PT1411HWRU_MESSAGE_LENGTH = 6;
// RAC-PT1411HWRU "Comfort Sense" feature bits
const uint8_t RAC_PT1411HWRU_CS_ENABLED = 0x40;
const uint8_t RAC_PT1411HWRU_CS_DATA = 0x80;
const uint8_t RAC_PT1411HWRU_CS_HEADER = 0xBA;
const uint8_t RAC_PT1411HWRU_CS_FOOTER_AUTO = 0x7A;
const uint8_t RAC_PT1411HWRU_CS_FOOTER_COOL = 0x72;
const uint8_t RAC_PT1411HWRU_CS_FOOTER_HEAT = 0x7E;
// RAC-PT1411HWRU Swing
const uint8_t RAC_PT1411HWRU_SWING_HEADER = 0xB9;
const std::vector<uint8_t> RAC_PT1411HWRU_SWING_VERTICAL{0xB9, 0x46, 0xF5, 0x0A, 0x04, 0xFB};
const std::vector<uint8_t> RAC_PT1411HWRU_SWING_OFF{0xB9, 0x46, 0xF5, 0x0A, 0x05, 0xFA};
// RAC-PT1411HWRU Fan speeds
const uint8_t RAC_PT1411HWRU_FAN_OFF = 0x7B;
constexpr RacPt1411hwruFanSpeed RAC_PT1411HWRU_FAN_AUTO{0xBF, 0x66};
constexpr RacPt1411hwruFanSpeed RAC_PT1411HWRU_FAN_LOW{0x9F, 0x28};
constexpr RacPt1411hwruFanSpeed RAC_PT1411HWRU_FAN_MED{0x5F, 0x3C};
constexpr RacPt1411hwruFanSpeed RAC_PT1411HWRU_FAN_HIGH{0x3F, 0x64};
// RAC-PT1411HWRU Fan speed for Auto and Dry climate modes
const RacPt1411hwruFanSpeed RAC_PT1411HWRU_NO_FAN{0x1F, 0x65};
// RAC-PT1411HWRU Modes
const uint8_t RAC_PT1411HWRU_MODE_AUTO = 0x08;
const uint8_t RAC_PT1411HWRU_MODE_COOL = 0x00;
const uint8_t RAC_PT1411HWRU_MODE_DRY = 0x04;
const uint8_t RAC_PT1411HWRU_MODE_FAN = 0x04;
const uint8_t RAC_PT1411HWRU_MODE_HEAT = 0x0C;
const uint8_t RAC_PT1411HWRU_MODE_OFF = 0x00;
// RAC-PT1411HWRU Fan-only "temperature"/system off
const uint8_t RAC_PT1411HWRU_TEMPERATURE_FAN_ONLY = 0x0E;
// RAC-PT1411HWRU temperature codes are not sequential; they instead follow a modified Gray code.
// Hence these look-up tables. In addition, the upper nibble is used here for additional
// "negative" and "fractional value" flags as required for some temperatures.
// RAC-PT1411HWRU °C Temperatures (short codes)
const std::vector<uint8_t> RAC_PT1411HWRU_TEMPERATURE_C{0x10, 0x00, 0x01, 0x03, 0x02, 0x06, 0x07, 0x05,
0x04, 0x0C, 0x0D, 0x09, 0x08, 0x0A, 0x0B};
// RAC-PT1411HWRU °F Temperatures (short codes)
const std::vector<uint8_t> RAC_PT1411HWRU_TEMPERATURE_F{0x10, 0x30, 0x00, 0x20, 0x01, 0x21, 0x03, 0x23, 0x02,
0x22, 0x06, 0x26, 0x07, 0x05, 0x25, 0x04, 0x24, 0x0C,
0x2C, 0x0D, 0x2D, 0x09, 0x08, 0x28, 0x0A, 0x2A, 0x0B};
// RAS-2819T protocol constants
const uint16_t RAS_2819T_HEADER1 = 0xC23D;
const uint8_t RAS_2819T_HEADER2 = 0xD5;
const uint8_t RAS_2819T_MESSAGE_LENGTH = 6;
// RAS-2819T fan speed codes for rc_code_1 (bytes 2-3)
const uint16_t RAS_2819T_FAN_AUTO = 0xBF40;
const uint16_t RAS_2819T_FAN_QUIET = 0xFF00;
const uint16_t RAS_2819T_FAN_LOW = 0x9F60;
const uint16_t RAS_2819T_FAN_MEDIUM = 0x5FA0;
const uint16_t RAS_2819T_FAN_HIGH = 0x3FC0;
// RAS-2819T fan speed codes for rc_code_2 (byte 1)
const uint8_t RAS_2819T_FAN2_AUTO = 0x66;
const uint8_t RAS_2819T_FAN2_QUIET = 0x01;
const uint8_t RAS_2819T_FAN2_LOW = 0x28;
const uint8_t RAS_2819T_FAN2_MEDIUM = 0x3C;
const uint8_t RAS_2819T_FAN2_HIGH = 0x50;
// RAS-2819T second packet suffix bytes for rc_code_2 (bytes 3-5)
// These are fixed patterns, not actual checksums
struct Ras2819tPacketSuffix {
uint8_t byte3;
uint8_t byte4;
uint8_t byte5;
};
const Ras2819tPacketSuffix RAS_2819T_SUFFIX_AUTO{0x00, 0x02, 0x3D};
const Ras2819tPacketSuffix RAS_2819T_SUFFIX_QUIET{0x00, 0x02, 0xD8};
const Ras2819tPacketSuffix RAS_2819T_SUFFIX_LOW{0x00, 0x02, 0xFF};
const Ras2819tPacketSuffix RAS_2819T_SUFFIX_MEDIUM{0x00, 0x02, 0x13};
const Ras2819tPacketSuffix RAS_2819T_SUFFIX_HIGH{0x00, 0x02, 0x27};
// RAS-2819T swing toggle command
const uint64_t RAS_2819T_SWING_TOGGLE = 0xC23D6B94E01F;
// RAS-2819T single-packet commands
const uint64_t RAS_2819T_POWER_OFF_COMMAND = 0xC23D7B84E01F;
// RAS-2819T known valid command patterns for validation
const std::array<uint64_t, 2> RAS_2819T_VALID_SINGLE_COMMANDS = {
RAS_2819T_POWER_OFF_COMMAND, // Power off
RAS_2819T_SWING_TOGGLE, // Swing toggle
};
const uint16_t RAS_2819T_VALID_HEADER1 = 0xC23D;
const uint8_t RAS_2819T_VALID_HEADER2 = 0xD5;
const uint8_t RAS_2819T_DRY_BYTE2 = 0x1F;
const uint8_t RAS_2819T_DRY_BYTE3 = 0xE0;
const uint8_t RAS_2819T_DRY_TEMP_OFFSET = 0x24;
const uint8_t RAS_2819T_AUTO_BYTE2 = 0x1F;
const uint8_t RAS_2819T_AUTO_BYTE3 = 0xE0;
const uint8_t RAS_2819T_AUTO_TEMP_OFFSET = 0x08;
const uint8_t RAS_2819T_FAN_ONLY_TEMP = 0xE4;
const uint8_t RAS_2819T_FAN_ONLY_TEMP_INV = 0x1B;
const uint8_t RAS_2819T_HEAT_TEMP_OFFSET = 0x0C;
// RAS-2819T second packet fixed values
const uint8_t RAS_2819T_AUTO_DRY_FAN_BYTE = 0x65;
const uint8_t RAS_2819T_AUTO_DRY_SUFFIX = 0x3A;
const uint8_t RAS_2819T_HEAT_SUFFIX = 0x3B;
// RAS-2819T temperature codes for 18-30°C
static const uint8_t RAS_2819T_TEMP_CODES[] = {
0x10, // 18°C
0x30, // 19°C
0x20, // 20°C
0x60, // 21°C
0x70, // 22°C
0x50, // 23°C
0x40, // 24°C
0xC0, // 25°C
0xD0, // 26°C
0x90, // 27°C
0x80, // 28°C
0xA0, // 29°C
0xB0 // 30°C
};
// Helper functions for RAS-2819T protocol
//
// ===== RAS-2819T PROTOCOL DOCUMENTATION =====
//
// The RAS-2819T uses a two-packet IR protocol with some exceptions for simple commands.
//
// PACKET STRUCTURE:
// All packets are 6 bytes (48 bits) transmitted with standard Toshiba timing.
//
// TWO-PACKET COMMANDS (Mode/Temperature/Fan changes):
//
// First Packet (rc_code_1): [C2 3D] [FAN_HI FAN_LO] [TEMP] [~TEMP]
// Byte 0-1: Header (always 0xC23D)
// Byte 2-3: Fan speed encoding (varies by mode, see fan tables below)
// Byte 4: Temperature + mode encoding
// Byte 5: Bitwise complement of temperature byte
//
// Second Packet (rc_code_2): [D5] [FAN2] [00] [SUF1] [SUF2] [SUF3]
// Byte 0: Header (always 0xD5)
// Byte 1: Fan speed secondary encoding
// Byte 2: Always 0x00
// Byte 3-5: Fixed suffix pattern (depends on fan speed and mode)
//
// TEMPERATURE ENCODING:
// Base temp codes: 18°C=0x10, 19°C=0x30, 20°C=0x20, 21°C=0x60, 22°C=0x70,
// 23°C=0x50, 24°C=0x40, 25°C=0xC0, 26°C=0xD0, 27°C=0x90,
// 28°C=0x80, 29°C=0xA0, 30°C=0xB0
// Mode offsets added to base temp:
// COOL: No offset
// HEAT: +0x0C (e.g., 24°C heat = 0x40 | 0x0C = 0x4C)
// AUTO: +0x08 (e.g., 24°C auto = 0x40 | 0x08 = 0x48)
// DRY: +0x24 (e.g., 24°C dry = 0x40 | 0x24 = 0x64)
//
// FAN SPEED ENCODING (First packet bytes 2-3):
// AUTO: 0xBF40, QUIET: 0xFF00, LOW: 0x9F60, MEDIUM: 0x5FA0, HIGH: 0x3FC0
// Special cases: AUTO/DRY modes use 0x1FE0 instead
//
// SINGLE-PACKET COMMANDS:
// Power Off: 0xC23D7B84E01F (6 bytes, no second packet)
// Swing Toggle: 0xC23D6B94E01F (6 bytes, no second packet)
//
// MODE DETECTION (from first packet):
// - Check bytes 2-3: if 0x7B84 → OFF mode
// - Check bytes 2-3: if 0x1FE0 → AUTO/DRY/low-temp-COOL (distinguish by temp code)
// - Otherwise: COOL/HEAT/FAN_ONLY (distinguish by temp code and byte 5)
/**
* Get fan speed encoding for RAS-2819T first packet (rc_code_1, bytes 2-3)
*/
static uint16_t get_ras_2819t_fan_code(climate::ClimateFanMode fan_mode) {
switch (fan_mode) {
case climate::CLIMATE_FAN_QUIET:
return RAS_2819T_FAN_QUIET;
case climate::CLIMATE_FAN_LOW:
return RAS_2819T_FAN_LOW;
case climate::CLIMATE_FAN_MEDIUM:
return RAS_2819T_FAN_MEDIUM;
case climate::CLIMATE_FAN_HIGH:
return RAS_2819T_FAN_HIGH;
case climate::CLIMATE_FAN_AUTO:
default:
return RAS_2819T_FAN_AUTO;
}
}
/**
* Get fan speed encoding for RAS-2819T rc_code_2 packet (second packet)
*/
struct Ras2819tSecondPacketCodes {
uint8_t fan_byte;
Ras2819tPacketSuffix suffix;
};
static Ras2819tSecondPacketCodes get_ras_2819t_second_packet_codes(climate::ClimateFanMode fan_mode) {
switch (fan_mode) {
case climate::CLIMATE_FAN_QUIET:
return {RAS_2819T_FAN2_QUIET, RAS_2819T_SUFFIX_QUIET};
case climate::CLIMATE_FAN_LOW:
return {RAS_2819T_FAN2_LOW, RAS_2819T_SUFFIX_LOW};
case climate::CLIMATE_FAN_MEDIUM:
return {RAS_2819T_FAN2_MEDIUM, RAS_2819T_SUFFIX_MEDIUM};
case climate::CLIMATE_FAN_HIGH:
return {RAS_2819T_FAN2_HIGH, RAS_2819T_SUFFIX_HIGH};
case climate::CLIMATE_FAN_AUTO:
default:
return {RAS_2819T_FAN2_AUTO, RAS_2819T_SUFFIX_AUTO};
}
}
/**
* Get temperature code for RAS-2819T protocol
*/
static uint8_t get_ras_2819t_temp_code(float temperature) {
int temp_index = static_cast<int>(temperature) - 18;
if (temp_index < 0 || temp_index >= static_cast<int>(sizeof(RAS_2819T_TEMP_CODES))) {
ESP_LOGW(TAG, "Temperature %.1f°C out of range [18-30°C], defaulting to 24°C", temperature);
return 0x40; // Default to 24°C
}
return RAS_2819T_TEMP_CODES[temp_index];
}
/**
* Decode temperature from RAS-2819T temp code
*/
static float decode_ras_2819t_temperature(uint8_t temp_code) {
uint8_t base_temp_code = temp_code & 0xF0;
// Find the code in the temperature array
for (size_t temp_index = 0; temp_index < sizeof(RAS_2819T_TEMP_CODES); temp_index++) {
if (RAS_2819T_TEMP_CODES[temp_index] == base_temp_code) {
return static_cast<float>(temp_index + 18); // 18°C is the minimum
}
}
ESP_LOGW(TAG, "Unknown temp code: 0x%02X, defaulting to 24°C", base_temp_code);
return 24.0f; // Default to 24°C
}
/**
* Decode fan speed from RAS-2819T IR codes
*/
static climate::ClimateFanMode decode_ras_2819t_fan_mode(uint16_t fan_code) {
switch (fan_code) {
case RAS_2819T_FAN_QUIET:
return climate::CLIMATE_FAN_QUIET;
case RAS_2819T_FAN_LOW:
return climate::CLIMATE_FAN_LOW;
case RAS_2819T_FAN_MEDIUM:
return climate::CLIMATE_FAN_MEDIUM;
case RAS_2819T_FAN_HIGH:
return climate::CLIMATE_FAN_HIGH;
case RAS_2819T_FAN_AUTO:
default:
return climate::CLIMATE_FAN_AUTO;
}
}
/**
* Validate RAS-2819T IR command structure and content
*/
static bool is_valid_ras_2819t_command(uint64_t rc_code_1, uint64_t rc_code_2 = 0) {
// Check header of first packet
uint16_t header1 = (rc_code_1 >> 32) & 0xFFFF;
if (header1 != RAS_2819T_VALID_HEADER1) {
return false;
}
// Single packet commands
if (rc_code_2 == 0) {
for (uint64_t valid_cmd : RAS_2819T_VALID_SINGLE_COMMANDS) {
if (rc_code_1 == valid_cmd) {
return true;
}
}
// Additional validation for unknown single packets
return false;
}
// Two-packet commands - validate second packet header
uint8_t header2 = (rc_code_2 >> 40) & 0xFF;
if (header2 != RAS_2819T_VALID_HEADER2) {
return false;
}
// Validate temperature complement in first packet (byte 4 should be ~byte 5)
uint8_t temp_byte = (rc_code_1 >> 8) & 0xFF;
uint8_t temp_complement = rc_code_1 & 0xFF;
if (temp_byte != static_cast<uint8_t>(~temp_complement)) {
return false;
}
// Validate fan speed combinations make sense
uint16_t fan_code = (rc_code_1 >> 16) & 0xFFFF;
uint8_t fan2_byte = (rc_code_2 >> 32) & 0xFF;
// Check if fan codes are from known valid patterns
bool valid_fan_combo = false;
if (fan_code == RAS_2819T_FAN_AUTO && fan2_byte == RAS_2819T_FAN2_AUTO)
valid_fan_combo = true;
if (fan_code == RAS_2819T_FAN_QUIET && fan2_byte == RAS_2819T_FAN2_QUIET)
valid_fan_combo = true;
if (fan_code == RAS_2819T_FAN_LOW && fan2_byte == RAS_2819T_FAN2_LOW)
valid_fan_combo = true;
if (fan_code == RAS_2819T_FAN_MEDIUM && fan2_byte == RAS_2819T_FAN2_MEDIUM)
valid_fan_combo = true;
if (fan_code == RAS_2819T_FAN_HIGH && fan2_byte == RAS_2819T_FAN2_HIGH)
valid_fan_combo = true;
if (fan_code == 0x1FE0 && fan2_byte == RAS_2819T_AUTO_DRY_FAN_BYTE)
valid_fan_combo = true; // AUTO/DRY
return valid_fan_combo;
}
void ToshibaClimate::setup() {
if (this->sensor_) {
this->sensor_->add_on_state_callback([this](float state) {
this->current_temperature = state;
this->transmit_rac_pt1411hwru_temp_();
// current temperature changed, publish state
this->publish_state();
});
this->current_temperature = this->sensor_->state;
} else {
this->current_temperature = NAN;
}
// restore set points
auto restore = this->restore_state_();
if (restore.has_value()) {
restore->apply(this);
} else {
// restore from defaults
this->mode = climate::CLIMATE_MODE_OFF;
// initialize target temperature to some value so that it's not NAN
this->target_temperature =
roundf(clamp<float>(this->current_temperature, this->minimum_temperature_, this->maximum_temperature_));
this->fan_mode = climate::CLIMATE_FAN_AUTO;
this->swing_mode = climate::CLIMATE_SWING_OFF;
}
// Set supported modes & temperatures based on model
this->minimum_temperature_ = this->temperature_min_();
this->maximum_temperature_ = this->temperature_max_();
this->swing_modes_ = this->toshiba_swing_modes_();
// Ensure swing mode is always initialized to a valid value
if (this->swing_modes_.empty() || !this->swing_modes_.count(this->swing_mode)) {
// No swing support for this model or current swing mode not supported, reset to OFF
this->swing_mode = climate::CLIMATE_SWING_OFF;
}
// Ensure mode is valid - ESPHome should only use standard climate modes
if (this->mode != climate::CLIMATE_MODE_OFF && this->mode != climate::CLIMATE_MODE_HEAT &&
this->mode != climate::CLIMATE_MODE_COOL && this->mode != climate::CLIMATE_MODE_HEAT_COOL &&
this->mode != climate::CLIMATE_MODE_DRY && this->mode != climate::CLIMATE_MODE_FAN_ONLY) {
ESP_LOGW(TAG, "Invalid mode detected during setup, resetting to OFF");
this->mode = climate::CLIMATE_MODE_OFF;
}
// Ensure fan mode is valid
if (!this->fan_mode.has_value()) {
ESP_LOGW(TAG, "Fan mode not set during setup, defaulting to AUTO");
this->fan_mode = climate::CLIMATE_FAN_AUTO;
}
// Never send nan to HA
if (std::isnan(this->target_temperature))
this->target_temperature = 24;
// Log final state for debugging HA errors
ESP_LOGV(TAG, "Setup complete - Mode: %d, Fan: %s, Swing: %d, Temp: %.1f", static_cast<int>(this->mode),
this->fan_mode.has_value() ? std::to_string(static_cast<int>(this->fan_mode.value())).c_str() : "NONE",
static_cast<int>(this->swing_mode), this->target_temperature);
}
void ToshibaClimate::transmit_state() {
if (this->model_ == MODEL_RAC_PT1411HWRU_C || this->model_ == MODEL_RAC_PT1411HWRU_F) {
this->transmit_rac_pt1411hwru_();
} else if (this->model_ == MODEL_RAS_2819T) {
this->transmit_ras_2819t_();
} else {
this->transmit_generic_();
}
}
void ToshibaClimate::transmit_generic_() {
uint8_t message[16] = {0};
uint8_t message_length = 9;
// Header
message[0] = 0xf2;
message[1] = 0x0d;
// Message length
message[2] = message_length - 6;
// First checksum
message[3] = message[0] ^ message[1] ^ message[2];
// Command
message[4] = TOSHIBA_COMMAND_DEFAULT;
// Temperature
uint8_t temperature = static_cast<uint8_t>(
clamp<float>(this->target_temperature, TOSHIBA_GENERIC_TEMP_C_MIN, TOSHIBA_GENERIC_TEMP_C_MAX));
message[5] = (temperature - static_cast<uint8_t>(TOSHIBA_GENERIC_TEMP_C_MIN)) << 4;
// Mode and fan
uint8_t mode;
switch (this->mode) {
case climate::CLIMATE_MODE_OFF:
mode = TOSHIBA_MODE_OFF;
break;
case climate::CLIMATE_MODE_HEAT:
mode = TOSHIBA_MODE_HEAT;
break;
case climate::CLIMATE_MODE_COOL:
mode = TOSHIBA_MODE_COOL;
break;
case climate::CLIMATE_MODE_DRY:
mode = TOSHIBA_MODE_DRY;
break;
case climate::CLIMATE_MODE_FAN_ONLY:
mode = TOSHIBA_MODE_FAN_ONLY;
break;
case climate::CLIMATE_MODE_HEAT_COOL:
default:
mode = TOSHIBA_MODE_AUTO;
}
uint8_t fan;
switch (this->fan_mode.value()) {
case climate::CLIMATE_FAN_QUIET:
fan = TOSHIBA_FAN_SPEED_QUIET;
break;
case climate::CLIMATE_FAN_LOW:
fan = TOSHIBA_FAN_SPEED_1;
break;
case climate::CLIMATE_FAN_MEDIUM:
fan = TOSHIBA_FAN_SPEED_3;
break;
case climate::CLIMATE_FAN_HIGH:
fan = TOSHIBA_FAN_SPEED_5;
break;
case climate::CLIMATE_FAN_AUTO:
default:
fan = TOSHIBA_FAN_SPEED_AUTO;
break;
}
message[6] = fan | mode;
// Zero
message[7] = 0x00;
// If timers bit in the command is set, two extra bytes are added here
// If power bit is set in the command, one extra byte is added here
// The last byte is the xor of all bytes from [4]
for (uint8_t i = 4; i < 8; i++) {
message[8] ^= message[i];
}
// Transmit
auto transmit = this->transmitter_->transmit();
auto *data = transmit.get_data();
this->encode_(data, message, message_length, 1);
transmit.perform();
}
void ToshibaClimate::transmit_rac_pt1411hwru_() {
uint8_t code = 0, index = 0, message[RAC_PT1411HWRU_MESSAGE_LENGTH * 2] = {0};
float temperature =
clamp<float>(this->target_temperature, TOSHIBA_RAC_PT1411HWRU_TEMP_C_MIN, TOSHIBA_RAC_PT1411HWRU_TEMP_C_MAX);
float temp_adjd = temperature - TOSHIBA_RAC_PT1411HWRU_TEMP_C_MIN;
auto transmit = this->transmitter_->transmit();
auto *data = transmit.get_data();
// Byte 0: Header upper (0xB2)
message[0] = RAC_PT1411HWRU_MESSAGE_HEADER0;
// Byte 1: Header lower (0x4D)
message[1] = ~message[0];
// Byte 2u: Fan speed
// Byte 2l: 1111 (on) or 1011 (off)
if (this->mode == climate::CLIMATE_MODE_OFF) {
message[2] = RAC_PT1411HWRU_FAN_OFF;
} else if ((this->mode == climate::CLIMATE_MODE_HEAT_COOL) || (this->mode == climate::CLIMATE_MODE_DRY)) {
message[2] = RAC_PT1411HWRU_NO_FAN.code1;
message[7] = RAC_PT1411HWRU_NO_FAN.code2;
} else {
switch (this->fan_mode.value()) {
case climate::CLIMATE_FAN_LOW:
message[2] = RAC_PT1411HWRU_FAN_LOW.code1;
message[7] = RAC_PT1411HWRU_FAN_LOW.code2;
break;
case climate::CLIMATE_FAN_MEDIUM:
message[2] = RAC_PT1411HWRU_FAN_MED.code1;
message[7] = RAC_PT1411HWRU_FAN_MED.code2;
break;
case climate::CLIMATE_FAN_HIGH:
message[2] = RAC_PT1411HWRU_FAN_HIGH.code1;
message[7] = RAC_PT1411HWRU_FAN_HIGH.code2;
break;
case climate::CLIMATE_FAN_AUTO:
default:
message[2] = RAC_PT1411HWRU_FAN_AUTO.code1;
message[7] = RAC_PT1411HWRU_FAN_AUTO.code2;
}
}
// Byte 3u: ~Fan speed
// Byte 3l: 0000 (on) or 0100 (off)
message[3] = ~message[2];
// Byte 4u: Temp
if (this->model_ == MODEL_RAC_PT1411HWRU_F) {
temperature = (temperature * 1.8) + 32;
temp_adjd = temperature - TOSHIBA_RAC_PT1411HWRU_TEMP_F_MIN;
}
index = static_cast<uint8_t>(roundf(temp_adjd));
if (this->model_ == MODEL_RAC_PT1411HWRU_F) {
code = RAC_PT1411HWRU_TEMPERATURE_F[index];
message[9] |= RAC_PT1411HWRU_FLAG_FAH;
} else {
code = RAC_PT1411HWRU_TEMPERATURE_C[index];
}
if ((this->mode == climate::CLIMATE_MODE_FAN_ONLY) || (this->mode == climate::CLIMATE_MODE_OFF)) {
code = RAC_PT1411HWRU_TEMPERATURE_FAN_ONLY;
}
if (code & RAC_PT1411HWRU_FLAG_FRAC) {
message[8] |= RAC_PT1411HWRU_FLAG_FRAC;
}
if (code & RAC_PT1411HWRU_FLAG_NEG) {
message[9] |= RAC_PT1411HWRU_FLAG_NEG;
}
message[4] = (code & RAC_PT1411HWRU_FLAG_MASK) << 4;
// Byte 4l: Mode
switch (this->mode) {
case climate::CLIMATE_MODE_OFF:
// zerooooo
break;
case climate::CLIMATE_MODE_HEAT:
message[4] |= RAC_PT1411HWRU_MODE_HEAT;
break;
case climate::CLIMATE_MODE_COOL:
message[4] |= RAC_PT1411HWRU_MODE_COOL;
break;
case climate::CLIMATE_MODE_DRY:
message[4] |= RAC_PT1411HWRU_MODE_DRY;
break;
case climate::CLIMATE_MODE_FAN_ONLY:
message[4] |= RAC_PT1411HWRU_MODE_FAN;
break;
case climate::CLIMATE_MODE_HEAT_COOL:
default:
message[4] |= RAC_PT1411HWRU_MODE_AUTO;
}
// Byte 5u: ~Temp
// Byte 5l: ~Mode
message[5] = ~message[4];
if (this->mode != climate::CLIMATE_MODE_OFF) {
// Byte 6: Header (0xD5)
message[6] = RAC_PT1411HWRU_MESSAGE_HEADER1;
// Byte 7: Fan speed part 2 (done above)
// Byte 8: 0x20 for °F frac, else 0 (done above)
// Byte 9: 0x10=NEG, 0x01=°F (done above)
// Byte 10: 0
// Byte 11: Checksum (bytes 6 through 10)
for (index = 6; index <= 10; index++) {
message[11] += message[index];
}
}
// load first block of IR code and repeat it once
this->encode_(data, &message[0], RAC_PT1411HWRU_MESSAGE_LENGTH, 1);
// load second block of IR code, if present
if (message[6] != 0) {
this->encode_(data, &message[6], RAC_PT1411HWRU_MESSAGE_LENGTH, 0);
}
transmit.perform();
// Swing Mode
data->reset();
data->space(TOSHIBA_PACKET_SPACE);
switch (this->swing_mode) {
case climate::CLIMATE_SWING_VERTICAL:
this->encode_(data, &RAC_PT1411HWRU_SWING_VERTICAL[0], RAC_PT1411HWRU_MESSAGE_LENGTH, 1);
break;
case climate::CLIMATE_SWING_OFF:
default:
this->encode_(data, &RAC_PT1411HWRU_SWING_OFF[0], RAC_PT1411HWRU_MESSAGE_LENGTH, 1);
}
data->space(TOSHIBA_PACKET_SPACE);
transmit.perform();
if (this->sensor_) {
this->transmit_rac_pt1411hwru_temp_(true, false);
}
}
void ToshibaClimate::transmit_rac_pt1411hwru_temp_(const bool cs_state, const bool cs_send_update) {
if ((this->mode == climate::CLIMATE_MODE_HEAT) || (this->mode == climate::CLIMATE_MODE_COOL) ||
(this->mode == climate::CLIMATE_MODE_HEAT_COOL)) {
uint8_t message[RAC_PT1411HWRU_MESSAGE_LENGTH] = {0};
float temperature = clamp<float>(this->current_temperature, 0.0, TOSHIBA_RAC_PT1411HWRU_TEMP_C_MAX + 1);
auto transmit = this->transmitter_->transmit();
auto *data = transmit.get_data();
// "Comfort Sense" feature notes
// IR Code: 0xBA45 xxXX yyYY
// xx: Temperature in °C
// Bit 6: feature state (on/off)
// Bit 7: message contains temperature data for feature (bit 6 must also be set)
// XX: Bitwise complement of xx
// yy: Mode: Auto=0x7A, Cool=0x72, Heat=0x7E
// YY: Bitwise complement of yy
//
// Byte 0: Header upper (0xBA)
message[0] = RAC_PT1411HWRU_CS_HEADER;
// Byte 1: Header lower (0x45)
message[1] = ~message[0];
// Byte 2: Temperature in °C
message[2] = static_cast<uint8_t>(roundf(temperature));
if (cs_send_update) {
message[2] |= RAC_PT1411HWRU_CS_ENABLED | RAC_PT1411HWRU_CS_DATA;
} else if (cs_state) {
message[2] |= RAC_PT1411HWRU_CS_ENABLED;
}
// Byte 3: Bitwise complement of byte 2
message[3] = ~message[2];
// Byte 4: Footer upper
switch (this->mode) {
case climate::CLIMATE_MODE_HEAT:
message[4] = RAC_PT1411HWRU_CS_FOOTER_HEAT;
break;
case climate::CLIMATE_MODE_COOL:
message[4] = RAC_PT1411HWRU_CS_FOOTER_COOL;
break;
case climate::CLIMATE_MODE_HEAT_COOL:
message[4] = RAC_PT1411HWRU_CS_FOOTER_AUTO;
default:
break;
}
// Byte 5: Footer lower/bitwise complement of byte 4
message[5] = ~message[4];
// load IR code and repeat it once
this->encode_(data, message, RAC_PT1411HWRU_MESSAGE_LENGTH, 1);
transmit.perform();
}
}
void ToshibaClimate::transmit_ras_2819t_() {
// Handle swing mode transmission for RAS-2819T
// Note: RAS-2819T uses a toggle command, so we need to track state changes
// Check if ONLY swing mode changed (and no other climate parameters)
bool swing_changed = (this->swing_mode != this->last_swing_mode_);
bool mode_changed = (this->mode != this->last_mode_);
bool fan_changed = (this->fan_mode != this->last_fan_mode_);
bool temp_changed = (abs(this->target_temperature - this->last_target_temperature_) > 0.1f);
bool only_swing_changed = swing_changed && !mode_changed && !fan_changed && !temp_changed;
if (only_swing_changed) {
// Send ONLY swing toggle command (like the physical remote does)
auto swing_transmit = this->transmitter_->transmit();
auto *swing_data = swing_transmit.get_data();
// Convert toggle command to bytes for transmission
uint8_t swing_message[RAS_2819T_MESSAGE_LENGTH];
swing_message[0] = (RAS_2819T_SWING_TOGGLE >> 40) & 0xFF;
swing_message[1] = (RAS_2819T_SWING_TOGGLE >> 32) & 0xFF;
swing_message[2] = (RAS_2819T_SWING_TOGGLE >> 24) & 0xFF;
swing_message[3] = (RAS_2819T_SWING_TOGGLE >> 16) & 0xFF;
swing_message[4] = (RAS_2819T_SWING_TOGGLE >> 8) & 0xFF;
swing_message[5] = RAS_2819T_SWING_TOGGLE & 0xFF;
// Use single packet transmission WITH repeat (like regular commands)
this->encode_(swing_data, swing_message, RAS_2819T_MESSAGE_LENGTH, 1);
swing_transmit.perform();
// Update all state tracking
this->last_swing_mode_ = this->swing_mode;
this->last_mode_ = this->mode;
this->last_fan_mode_ = this->fan_mode;
this->last_target_temperature_ = this->target_temperature;
// Immediately publish the state change to Home Assistant
this->publish_state();
return; // Exit early - don't send climate command
}
// If we get here, send the regular climate command (temperature/mode/fan)
uint8_t message1[RAS_2819T_MESSAGE_LENGTH] = {0};
uint8_t message2[RAS_2819T_MESSAGE_LENGTH] = {0};
float temperature =
clamp<float>(this->target_temperature, TOSHIBA_RAS_2819T_TEMP_C_MIN, TOSHIBA_RAS_2819T_TEMP_C_MAX);
// Build first packet (RAS_2819T_HEADER1 + 4 bytes)
message1[0] = (RAS_2819T_HEADER1 >> 8) & 0xFF;
message1[1] = RAS_2819T_HEADER1 & 0xFF;
// Handle OFF mode
if (this->mode == climate::CLIMATE_MODE_OFF) {
// Extract bytes from power off command constant
message1[2] = (RAS_2819T_POWER_OFF_COMMAND >> 24) & 0xFF;
message1[3] = (RAS_2819T_POWER_OFF_COMMAND >> 16) & 0xFF;
message1[4] = (RAS_2819T_POWER_OFF_COMMAND >> 8) & 0xFF;
message1[5] = RAS_2819T_POWER_OFF_COMMAND & 0xFF;
// No second packet for OFF
} else {
// Get temperature and fan encoding
uint8_t temp_code = get_ras_2819t_temp_code(temperature);
// Get fan speed encoding for rc_code_1
climate::ClimateFanMode effective_fan_mode = this->fan_mode.value();
// Dry mode only supports AUTO fan speed
if (this->mode == climate::CLIMATE_MODE_DRY) {
effective_fan_mode = climate::CLIMATE_FAN_AUTO;
if (this->fan_mode.value() != climate::CLIMATE_FAN_AUTO) {
ESP_LOGW(TAG, "Dry mode only supports AUTO fan speed, forcing AUTO");
}
}
uint16_t fan_code = get_ras_2819t_fan_code(effective_fan_mode);
// Mode and temperature encoding
switch (this->mode) {
case climate::CLIMATE_MODE_COOL:
// All cooling temperatures support fan speed control
message1[2] = (fan_code >> 8) & 0xFF;
message1[3] = fan_code & 0xFF;
message1[4] = temp_code;
message1[5] = ~temp_code;
break;
case climate::CLIMATE_MODE_HEAT:
// Heating supports fan speed control
message1[2] = (fan_code >> 8) & 0xFF;
message1[3] = fan_code & 0xFF;
// Heat mode adds offset to temperature code
message1[4] = temp_code | RAS_2819T_HEAT_TEMP_OFFSET;
message1[5] = ~(temp_code | RAS_2819T_HEAT_TEMP_OFFSET);
break;
case climate::CLIMATE_MODE_HEAT_COOL:
// Auto mode uses fixed encoding
message1[2] = RAS_2819T_AUTO_BYTE2;
message1[3] = RAS_2819T_AUTO_BYTE3;
message1[4] = temp_code | RAS_2819T_AUTO_TEMP_OFFSET;
message1[5] = ~(temp_code | RAS_2819T_AUTO_TEMP_OFFSET);
break;
case climate::CLIMATE_MODE_DRY:
// Dry mode uses fixed encoding and forces AUTO fan
message1[2] = RAS_2819T_DRY_BYTE2;
message1[3] = RAS_2819T_DRY_BYTE3;
message1[4] = temp_code | RAS_2819T_DRY_TEMP_OFFSET;
message1[5] = ~message1[4];
break;
case climate::CLIMATE_MODE_FAN_ONLY:
// Fan only mode supports fan speed control
message1[2] = (fan_code >> 8) & 0xFF;
message1[3] = fan_code & 0xFF;
message1[4] = RAS_2819T_FAN_ONLY_TEMP;
message1[5] = RAS_2819T_FAN_ONLY_TEMP_INV;
break;
default:
// Default case supports fan speed control
message1[2] = (fan_code >> 8) & 0xFF;
message1[3] = fan_code & 0xFF;
message1[4] = temp_code;
message1[5] = ~temp_code;
break;
}
// Build second packet (RAS_2819T_HEADER2 + 4 bytes)
message2[0] = RAS_2819T_HEADER2;
// Get fan speed encoding for rc_code_2
Ras2819tSecondPacketCodes second_packet_codes = get_ras_2819t_second_packet_codes(effective_fan_mode);
// Determine header byte 2 and fan encoding based on mode
switch (this->mode) {
case climate::CLIMATE_MODE_COOL:
message2[1] = second_packet_codes.fan_byte;
message2[2] = 0x00;
message2[3] = second_packet_codes.suffix.byte3;
message2[4] = second_packet_codes.suffix.byte4;
message2[5] = second_packet_codes.suffix.byte5;
break;
case climate::CLIMATE_MODE_HEAT:
message2[1] = second_packet_codes.fan_byte;
message2[2] = 0x00;
message2[3] = second_packet_codes.suffix.byte3;
message2[4] = 0x00;
message2[5] = RAS_2819T_HEAT_SUFFIX;
break;
case climate::CLIMATE_MODE_HEAT_COOL:
case climate::CLIMATE_MODE_DRY:
// Auto/Dry modes use fixed values regardless of fan setting
message2[1] = RAS_2819T_AUTO_DRY_FAN_BYTE;
message2[2] = 0x00;
message2[3] = 0x00;
message2[4] = 0x00;
message2[5] = RAS_2819T_AUTO_DRY_SUFFIX;
break;
case climate::CLIMATE_MODE_FAN_ONLY:
message2[1] = second_packet_codes.fan_byte;
message2[2] = 0x00;
message2[3] = second_packet_codes.suffix.byte3;
message2[4] = 0x00;
message2[5] = RAS_2819T_HEAT_SUFFIX;
break;
default:
message2[1] = second_packet_codes.fan_byte;
message2[2] = 0x00;
message2[3] = second_packet_codes.suffix.byte3;
message2[4] = second_packet_codes.suffix.byte4;
message2[5] = second_packet_codes.suffix.byte5;
break;
}
}
// Log final messages being transmitted
// Transmit using proper Toshiba protocol timing
auto transmit = this->transmitter_->transmit();
auto *data = transmit.get_data();
// Use existing Toshiba encode function for proper timing
this->encode_(data, message1, RAS_2819T_MESSAGE_LENGTH, 1);
if (this->mode != climate::CLIMATE_MODE_OFF) {
// Send second packet with gap
this->encode_(data, message2, RAS_2819T_MESSAGE_LENGTH, 0);
}
transmit.perform();
// Update all state tracking after successful transmission
this->last_swing_mode_ = this->swing_mode;
this->last_mode_ = this->mode;
this->last_fan_mode_ = this->fan_mode;
this->last_target_temperature_ = this->target_temperature;
}
uint8_t ToshibaClimate::is_valid_rac_pt1411hwru_header_(const uint8_t *message) {
const std::vector<uint8_t> header{RAC_PT1411HWRU_MESSAGE_HEADER0, RAC_PT1411HWRU_CS_HEADER,
RAC_PT1411HWRU_SWING_HEADER};
for (auto i : header) {
if ((message[0] == i) && (message[1] == static_cast<uint8_t>(~i)))
return i;
}
if (message[0] == RAC_PT1411HWRU_MESSAGE_HEADER1)
return RAC_PT1411HWRU_MESSAGE_HEADER1;
return 0;
}
bool ToshibaClimate::compare_rac_pt1411hwru_packets_(const uint8_t *message1, const uint8_t *message2) {
for (uint8_t i = 0; i < RAC_PT1411HWRU_MESSAGE_LENGTH; i++) {
if (message1[i] != message2[i])
return false;
}
return true;
}
bool ToshibaClimate::is_valid_rac_pt1411hwru_message_(const uint8_t *message) {
uint8_t checksum = 0;
switch (this->is_valid_rac_pt1411hwru_header_(message)) {
case RAC_PT1411HWRU_MESSAGE_HEADER0:
case RAC_PT1411HWRU_CS_HEADER:
case RAC_PT1411HWRU_SWING_HEADER:
if (this->is_valid_rac_pt1411hwru_header_(message) && (message[2] == static_cast<uint8_t>(~message[3])) &&
(message[4] == static_cast<uint8_t>(~message[5]))) {
return true;
}
break;
case RAC_PT1411HWRU_MESSAGE_HEADER1:
for (uint8_t i = 0; i < RAC_PT1411HWRU_MESSAGE_LENGTH - 1; i++) {
checksum += message[i];
}
if (checksum == message[RAC_PT1411HWRU_MESSAGE_LENGTH - 1]) {
return true;
}
break;
default:
return false;
}
return false;
}
bool ToshibaClimate::process_ras_2819t_command_(const remote_base::ToshibaAcData &toshiba_data) {
// Check for power-off command (single packet)
if (toshiba_data.rc_code_2 == 0 && toshiba_data.rc_code_1 == RAS_2819T_POWER_OFF_COMMAND) {
this->mode = climate::CLIMATE_MODE_OFF;
ESP_LOGI(TAG, "Mode: OFF");
this->publish_state();
return true;
}
// Check for swing toggle command (single packet)
if (toshiba_data.rc_code_2 == 0 && toshiba_data.rc_code_1 == RAS_2819T_SWING_TOGGLE) {
// Toggle swing mode
if (this->swing_mode == climate::CLIMATE_SWING_VERTICAL) {
this->swing_mode = climate::CLIMATE_SWING_OFF;
ESP_LOGI(TAG, "Swing: OFF");
} else {
this->swing_mode = climate::CLIMATE_SWING_VERTICAL;
ESP_LOGI(TAG, "Swing: VERTICAL");
}
this->publish_state();
return true;
}
// Handle regular two-packet commands (mode/temperature/fan changes)
if (toshiba_data.rc_code_2 != 0) {
// Convert to byte array for easier processing
uint8_t message1[6], message2[6];
for (uint8_t i = 0; i < 6; i++) {
message1[i] = (toshiba_data.rc_code_1 >> (40 - i * 8)) & 0xFF;
message2[i] = (toshiba_data.rc_code_2 >> (40 - i * 8)) & 0xFF;
}
// Decode the protocol using message1 (rc_code_1)
uint8_t temp_code = message1[4];
// Decode mode - check bytes 2-3 pattern and temperature code
if ((message1[2] == 0x7B) && (message1[3] == 0x84)) {
// OFF mode has specific pattern
this->mode = climate::CLIMATE_MODE_OFF;
ESP_LOGI(TAG, "Mode: OFF");
} else if ((message1[2] == 0x1F) && (message1[3] == 0xE0)) {
// 0x1FE0 pattern is used for AUTO, DRY, and low-temp COOL
if ((temp_code & 0x0F) == 0x08) {
this->mode = climate::CLIMATE_MODE_HEAT_COOL;
ESP_LOGI(TAG, "Mode: AUTO");
} else if ((temp_code & 0x0F) == 0x04) {
this->mode = climate::CLIMATE_MODE_DRY;
ESP_LOGI(TAG, "Mode: DRY");
} else {
this->mode = climate::CLIMATE_MODE_COOL;
ESP_LOGI(TAG, "Mode: COOL (low temp)");
}
} else {
// Variable fan speed patterns - decode by temperature code
if ((temp_code & 0x0F) == 0x0C) {
this->mode = climate::CLIMATE_MODE_HEAT;
ESP_LOGI(TAG, "Mode: HEAT");
} else if (message1[5] == 0x1B) {
this->mode = climate::CLIMATE_MODE_FAN_ONLY;
ESP_LOGI(TAG, "Mode: FAN_ONLY");
} else {
this->mode = climate::CLIMATE_MODE_COOL;
ESP_LOGI(TAG, "Mode: COOL");
}
}
// Decode fan speed from rc_code_1
uint16_t fan_code = (message1[2] << 8) | message1[3];
this->fan_mode = decode_ras_2819t_fan_mode(fan_code);
// Decode temperature
if (this->mode != climate::CLIMATE_MODE_OFF && this->mode != climate::CLIMATE_MODE_FAN_ONLY) {
this->target_temperature = decode_ras_2819t_temperature(temp_code);
}
this->publish_state();
return true;
} else {
ESP_LOGD(TAG, "Unknown single-packet RAS-2819T command: 0x%" PRIX64, toshiba_data.rc_code_1);
return false;
}
}
bool ToshibaClimate::on_receive(remote_base::RemoteReceiveData data) {
// Try modern ToshibaAcProtocol decoder first (handles RAS-2819T and potentially others)
remote_base::ToshibaAcProtocol toshiba_protocol;
auto decode_result = toshiba_protocol.decode(data);
if (decode_result.has_value()) {
auto toshiba_data = decode_result.value();
// Validate and process RAS-2819T commands
if (is_valid_ras_2819t_command(toshiba_data.rc_code_1, toshiba_data.rc_code_2)) {
return this->process_ras_2819t_command_(toshiba_data);
}
}
// Fall back to generic processing for older protocols
uint8_t message[18] = {0};
uint8_t message_length = TOSHIBA_HEADER_LENGTH, temperature_code = 0;
// Validate header
if (!data.expect_item(TOSHIBA_HEADER_MARK, TOSHIBA_HEADER_SPACE)) {
return false;
}
// Read incoming bits into buffer
if (!this->decode_(&data, message, message_length)) {
return false;
}
// Determine incoming message protocol version and/or length
if (this->is_valid_rac_pt1411hwru_header_(message)) {
// We already received four bytes
message_length = RAC_PT1411HWRU_MESSAGE_LENGTH - 4;
} else if ((message[0] ^ message[1] ^ message[2]) != message[3]) {
// Return false if first checksum was not valid
return false;
} else {
// First checksum was valid so continue receiving the remaining bits
message_length = message[2] + 2;
}
// Decode the remaining bytes
if (!this->decode_(&data, &message[4], message_length)) {
return false;
}
// If this is a RAC-PT1411HWRU message, we expect the first packet a second time and also possibly a third packet
if (this->is_valid_rac_pt1411hwru_header_(message)) {
// There is always a space between packets
if (!data.expect_item(TOSHIBA_BIT_MARK, TOSHIBA_GAP_SPACE)) {
return false;
}
// Validate header 2
if (!data.expect_item(TOSHIBA_HEADER_MARK, TOSHIBA_HEADER_SPACE)) {
return false;
}
if (!this->decode_(&data, &message[6], RAC_PT1411HWRU_MESSAGE_LENGTH)) {
return false;
}
// If this is a RAC-PT1411HWRU message, there may also be a third packet.
// We do not fail the receive if we don't get this; it isn't always present
if (data.expect_item(TOSHIBA_BIT_MARK, TOSHIBA_GAP_SPACE)) {
// Validate header 3
data.expect_item(TOSHIBA_HEADER_MARK, TOSHIBA_HEADER_SPACE);
if (this->decode_(&data, &message[12], RAC_PT1411HWRU_MESSAGE_LENGTH)) {
if (!this->is_valid_rac_pt1411hwru_message_(&message[12])) {
// If a third packet was received but the checksum is not valid, fail
return false;
}
}
}
if (!this->compare_rac_pt1411hwru_packets_(&message[0], &message[6])) {
// If the first two packets don't match each other, fail
return false;
}
if (!this->is_valid_rac_pt1411hwru_message_(&message[0])) {
// If the first packet isn't valid, fail
return false;
}
}
// Header has been verified, now determine protocol version and set the climate component properties
switch (this->is_valid_rac_pt1411hwru_header_(message)) {
// Power, temperature, mode, fan speed
case RAC_PT1411HWRU_MESSAGE_HEADER0:
// Get the mode
switch (message[4] & 0x0F) {
case RAC_PT1411HWRU_MODE_AUTO:
this->mode = climate::CLIMATE_MODE_HEAT_COOL;
break;
// case RAC_PT1411HWRU_MODE_OFF:
case RAC_PT1411HWRU_MODE_COOL:
if (((message[4] >> 4) == RAC_PT1411HWRU_TEMPERATURE_FAN_ONLY) && (message[2] == RAC_PT1411HWRU_FAN_OFF)) {
this->mode = climate::CLIMATE_MODE_OFF;
} else {
this->mode = climate::CLIMATE_MODE_COOL;
}
break;
// case RAC_PT1411HWRU_MODE_DRY:
case RAC_PT1411HWRU_MODE_FAN:
if ((message[4] >> 4) == RAC_PT1411HWRU_TEMPERATURE_FAN_ONLY) {
this->mode = climate::CLIMATE_MODE_FAN_ONLY;
} else {
this->mode = climate::CLIMATE_MODE_DRY;
}
break;
case RAC_PT1411HWRU_MODE_HEAT:
this->mode = climate::CLIMATE_MODE_HEAT;
break;
default:
this->mode = climate::CLIMATE_MODE_OFF;
break;
}
// Get the fan speed/mode
switch (message[2]) {
case RAC_PT1411HWRU_FAN_LOW.code1:
this->fan_mode = climate::CLIMATE_FAN_LOW;
break;
case RAC_PT1411HWRU_FAN_MED.code1:
this->fan_mode = climate::CLIMATE_FAN_MEDIUM;
break;
case RAC_PT1411HWRU_FAN_HIGH.code1:
this->fan_mode = climate::CLIMATE_FAN_HIGH;
break;
case RAC_PT1411HWRU_FAN_AUTO.code1:
default:
this->fan_mode = climate::CLIMATE_FAN_AUTO;
break;
}
// Get the target temperature
if (this->is_valid_rac_pt1411hwru_message_(&message[12])) {
temperature_code =
(message[4] >> 4) | (message[14] & RAC_PT1411HWRU_FLAG_FRAC) | (message[15] & RAC_PT1411HWRU_FLAG_NEG);
if (message[15] & RAC_PT1411HWRU_FLAG_FAH) {
for (size_t i = 0; i < RAC_PT1411HWRU_TEMPERATURE_F.size(); i++) {
if (RAC_PT1411HWRU_TEMPERATURE_F[i] == temperature_code) {
this->target_temperature = static_cast<float>((i + TOSHIBA_RAC_PT1411HWRU_TEMP_F_MIN - 32) * 5) / 9;
}
}
} else {
for (size_t i = 0; i < RAC_PT1411HWRU_TEMPERATURE_C.size(); i++) {
if (RAC_PT1411HWRU_TEMPERATURE_C[i] == temperature_code) {
this->target_temperature = i + TOSHIBA_RAC_PT1411HWRU_TEMP_C_MIN;
}
}
}
}
break;
// "Comfort Sense" temperature packet
case RAC_PT1411HWRU_CS_HEADER:
// "Comfort Sense" feature notes
// IR Code: 0xBA45 xxXX yyYY
// xx: Temperature in °C
// Bit 6: feature state (on/off)
// Bit 7: message contains temperature data for feature (bit 6 must also be set)
// XX: Bitwise complement of xx
// yy: Mode: Auto: 7A
// Cool: 72
// Heat: 7E
// YY: Bitwise complement of yy
if ((message[2] & RAC_PT1411HWRU_CS_ENABLED) && (message[2] & RAC_PT1411HWRU_CS_DATA)) {
// Setting current_temperature this way allows the unit's remote to provide the temperature to HA
this->current_temperature = message[2] & ~(RAC_PT1411HWRU_CS_ENABLED | RAC_PT1411HWRU_CS_DATA);
}
break;
// Swing mode
case RAC_PT1411HWRU_SWING_HEADER:
if (message[4] == RAC_PT1411HWRU_SWING_VERTICAL[4]) {
this->swing_mode = climate::CLIMATE_SWING_VERTICAL;
} else {
this->swing_mode = climate::CLIMATE_SWING_OFF;
}
break;
// Generic (old) Toshiba packet
default:
uint8_t checksum = 0;
// Add back the length of the header (we pruned it above)
message_length += TOSHIBA_HEADER_LENGTH;
// Validate the second checksum before trusting any more of the message
for (uint8_t i = TOSHIBA_HEADER_LENGTH; i < message_length - 1; i++) {
checksum ^= message[i];
}
// Did our computed checksum and the provided checksum match?
if (checksum != message[message_length - 1]) {
return false;
}
// Check if this is a short swing/fix message
if (message[4] & TOSHIBA_COMMAND_MOTION) {
// Not supported yet
return false;
}
// Get the mode
switch (message[6] & 0x0F) {
case TOSHIBA_MODE_OFF:
this->mode = climate::CLIMATE_MODE_OFF;
break;
case TOSHIBA_MODE_COOL:
this->mode = climate::CLIMATE_MODE_COOL;
break;
case TOSHIBA_MODE_DRY:
this->mode = climate::CLIMATE_MODE_DRY;
break;
case TOSHIBA_MODE_FAN_ONLY:
this->mode = climate::CLIMATE_MODE_FAN_ONLY;
break;
case TOSHIBA_MODE_HEAT:
this->mode = climate::CLIMATE_MODE_HEAT;
break;
case TOSHIBA_MODE_AUTO:
default:
this->mode = climate::CLIMATE_MODE_HEAT_COOL;
}
// Get the fan mode
switch (message[6] & 0xF0) {
case TOSHIBA_FAN_SPEED_QUIET:
this->fan_mode = climate::CLIMATE_FAN_QUIET;
break;
case TOSHIBA_FAN_SPEED_1:
this->fan_mode = climate::CLIMATE_FAN_LOW;
break;
case TOSHIBA_FAN_SPEED_3:
this->fan_mode = climate::CLIMATE_FAN_MEDIUM;
break;
case TOSHIBA_FAN_SPEED_5:
this->fan_mode = climate::CLIMATE_FAN_HIGH;
break;
case TOSHIBA_FAN_SPEED_AUTO:
default:
this->fan_mode = climate::CLIMATE_FAN_AUTO;
break;
}
// Get the target temperature
this->target_temperature = (message[5] >> 4) + TOSHIBA_GENERIC_TEMP_C_MIN;
}
this->publish_state();
return true;
}
void ToshibaClimate::encode_(remote_base::RemoteTransmitData *data, const uint8_t *message, const uint8_t nbytes,
const uint8_t repeat) {
data->set_carrier_frequency(TOSHIBA_CARRIER_FREQUENCY);
for (uint8_t copy = 0; copy <= repeat; copy++) {
data->item(TOSHIBA_HEADER_MARK, TOSHIBA_HEADER_SPACE);
for (uint8_t byte = 0; byte < nbytes; byte++) {
for (uint8_t bit = 0; bit < 8; bit++) {
data->mark(TOSHIBA_BIT_MARK);
if (message[byte] & (1 << (7 - bit))) {
data->space(TOSHIBA_ONE_SPACE);
} else {
data->space(TOSHIBA_ZERO_SPACE);
}
}
}
data->item(TOSHIBA_BIT_MARK, TOSHIBA_GAP_SPACE);
}
}
bool ToshibaClimate::decode_(remote_base::RemoteReceiveData *data, uint8_t *message, const uint8_t nbytes) {
for (uint8_t byte = 0; byte < nbytes; byte++) {
for (uint8_t bit = 0; bit < 8; bit++) {
if (data->expect_item(TOSHIBA_BIT_MARK, TOSHIBA_ONE_SPACE)) {
message[byte] |= 1 << (7 - bit);
} else if (data->expect_item(TOSHIBA_BIT_MARK, TOSHIBA_ZERO_SPACE)) {
message[byte] &= static_cast<uint8_t>(~(1 << (7 - bit)));
} else {
return false;
}
}
}
return true;
}
} // namespace toshiba
} // namespace esphome