1
0
mirror of https://github.com/esphome/esphome.git synced 2026-02-08 00:31:58 +00:00
Files
esphome/esphome/components/cc1101/cc1101.cpp
2025-12-03 10:42:04 -05:00

551 lines
16 KiB
C++

#include "cc1101.h"
#include "cc1101pa.h"
#include "esphome/core/helpers.h"
#include "esphome/core/log.h"
#include <cmath>
namespace esphome::cc1101 {
static const char *const TAG = "cc1101";
static void split_float(float value, int mbits, uint8_t &e, uint32_t &m) {
int e_tmp;
float m_tmp = std::frexp(value, &e_tmp);
if (e_tmp <= mbits) {
e = 0;
m = 0;
return;
}
e = static_cast<uint8_t>(e_tmp - mbits - 1);
m = static_cast<uint32_t>(((m_tmp * 2 - 1) * (1 << (mbits + 1))) + 1) >> 1;
if (m == (1UL << mbits)) {
e = e + 1;
m = 0;
}
}
CC1101Component::CC1101Component() {
// Datasheet defaults
memset(&this->state_, 0, sizeof(this->state_));
this->state_.GDO2_CFG = 0x0D; // Serial Data (for RX on GDO2)
this->state_.GDO1_CFG = 0x2E;
this->state_.GDO0_CFG = 0x0D; // Serial Data (for RX on GDO0 / TX Input)
this->state_.FIFO_THR = 7;
this->state_.SYNC1 = 0xD3;
this->state_.SYNC0 = 0x91;
this->state_.PKTLEN = 0xFF;
this->state_.APPEND_STATUS = 1;
this->state_.LENGTH_CONFIG = 1;
this->state_.CRC_EN = 1;
this->state_.WHITE_DATA = 1;
this->state_.FREQ_IF = 0x0F;
this->state_.FREQ2 = 0x1E;
this->state_.FREQ1 = 0xC4;
this->state_.FREQ0 = 0xEC;
this->state_.DRATE_E = 0x0C;
this->state_.CHANBW_E = 0x02;
this->state_.DRATE_M = 0x22;
this->state_.SYNC_MODE = 2;
this->state_.CHANSPC_E = 2;
this->state_.NUM_PREAMBLE = 2;
this->state_.CHANSPC_M = 0xF8;
this->state_.DEVIATION_M = 7;
this->state_.DEVIATION_E = 4;
this->state_.RX_TIME = 7;
this->state_.CCA_MODE = 3;
this->state_.PO_TIMEOUT = 1;
this->state_.FOC_LIMIT = 2;
this->state_.FOC_POST_K = 1;
this->state_.FOC_PRE_K = 2;
this->state_.FOC_BS_CS_GATE = 1;
this->state_.BS_POST_KP = 1;
this->state_.BS_POST_KI = 1;
this->state_.BS_PRE_KP = 2;
this->state_.BS_PRE_KI = 1;
this->state_.MAGN_TARGET = 3;
this->state_.AGC_LNA_PRIORITY = 1;
this->state_.FILTER_LENGTH = 1;
this->state_.WAIT_TIME = 1;
this->state_.HYST_LEVEL = 2;
this->state_.WOREVT1 = 0x87;
this->state_.WOREVT0 = 0x6B;
this->state_.RC_CAL = 1;
this->state_.EVENT1 = 7;
this->state_.RC_PD = 1;
this->state_.MIX_CURRENT = 2;
this->state_.LODIV_BUF_CURRENT_RX = 1;
this->state_.LNA2MIX_CURRENT = 1;
this->state_.LNA_CURRENT = 1;
this->state_.LODIV_BUF_CURRENT_TX = 1;
this->state_.FSCAL3_LO = 9;
this->state_.CHP_CURR_CAL_EN = 2;
this->state_.FSCAL3_HI = 2;
this->state_.FSCAL2 = 0x0A;
this->state_.FSCAL1 = 0x20;
this->state_.FSCAL0 = 0x0D;
this->state_.RCCTRL1 = 0x41;
this->state_.FSTEST = 0x59;
this->state_.PTEST = 0x7F;
this->state_.AGCTEST = 0x3F;
this->state_.TEST2 = 0x88;
this->state_.TEST1 = 0x31;
this->state_.TEST0_LO = 1;
this->state_.VCO_SEL_CAL_EN = 1;
this->state_.TEST0_HI = 2;
// PKTCTRL0
this->state_.PKT_FORMAT = 3;
this->state_.LENGTH_CONFIG = 2;
this->state_.FS_AUTOCAL = 1;
// Default Settings
this->set_frequency(433920);
this->set_if_frequency(153);
this->set_filter_bandwidth(203);
this->set_channel(0);
this->set_channel_spacing(200);
this->set_symbol_rate(5000);
this->set_sync_mode(SyncMode::SYNC_MODE_NONE);
this->set_carrier_sense_above_threshold(true);
this->set_modulation_type(Modulation::MODULATION_ASK_OOK);
this->set_magn_target(MagnTarget::MAGN_TARGET_42DB);
this->set_max_lna_gain(MaxLnaGain::MAX_LNA_GAIN_DEFAULT);
this->set_max_dvga_gain(MaxDvgaGain::MAX_DVGA_GAIN_MINUS_3);
this->set_lna_priority(false);
this->set_wait_time(WaitTime::WAIT_TIME_32_SAMPLES);
// CRITICAL: Initialize PA Table to avoid transmitting 0 power (Silence)
memset(this->pa_table_, 0, sizeof(this->pa_table_));
this->set_output_power(10.0f);
}
void CC1101Component::setup() {
this->spi_setup();
this->cs_->digital_write(true);
delayMicroseconds(1);
this->cs_->digital_write(false);
delayMicroseconds(1);
this->cs_->digital_write(true);
delayMicroseconds(41);
this->cs_->digital_write(false);
delay(5);
this->strobe_(Command::RES);
delay(5);
this->read_(Register::PARTNUM);
this->read_(Register::VERSION);
this->chip_id_ = encode_uint16(this->state_.PARTNUM, this->state_.VERSION);
ESP_LOGD(TAG, "CC1101 found! Chip ID: 0x%04X", this->chip_id_);
if (this->state_.VERSION == 0 || this->state_.PARTNUM == 0xFF) {
ESP_LOGE(TAG, "Failed to verify CC1101.");
this->mark_failed();
return;
}
this->initialized_ = true;
for (uint8_t i = 0; i <= static_cast<uint8_t>(Register::TEST0); i++) {
if (i == static_cast<uint8_t>(Register::FSTEST) || i == static_cast<uint8_t>(Register::AGCTEST)) {
continue;
}
this->write_(static_cast<Register>(i));
}
this->write_(Register::PATABLE, this->pa_table_, sizeof(this->pa_table_));
this->strobe_(Command::RX);
}
void CC1101Component::dump_config() {
static const char *const MODULATION_NAMES[] = {"2-FSK", "GFSK", "UNUSED", "ASK/OOK",
"4-FSK", "UNUSED", "UNUSED", "MSK"};
int32_t freq = static_cast<int32_t>(this->state_.FREQ2 << 16 | this->state_.FREQ1 << 8 | this->state_.FREQ0) *
XTAL_FREQUENCY / (1 << 16);
float symbol_rate =
(((256.0f + this->state_.DRATE_M) * (1 << this->state_.DRATE_E)) / (1 << 28)) * XTAL_FREQUENCY * 1000.0f;
float bw = XTAL_FREQUENCY / (8.0f * (4 + this->state_.CHANBW_M) * (1 << this->state_.CHANBW_E));
ESP_LOGCONFIG(TAG, "CC1101:");
LOG_PIN(" CS Pin: ", this->cs_);
ESP_LOGCONFIG(TAG,
" Chip ID: 0x%04X\n"
" Frequency: %" PRId32 " kHz\n"
" Channel: %u\n"
" Modulation: %s\n"
" Symbol Rate: %.0f baud\n"
" Filter Bandwidth: %.1f kHz\n"
" Output Power: %.1f dBm",
this->chip_id_, freq, this->state_.CHANNR, MODULATION_NAMES[this->state_.MOD_FORMAT & 0x07],
symbol_rate, bw, this->output_power_effective_);
}
void CC1101Component::begin_tx() {
// Ensure Packet Format is 3 (Async Serial), use GDO0 as input during TX
this->write_(Register::PKTCTRL0, 0x32);
ESP_LOGV(TAG, "Beginning TX sequence");
this->strobe_(Command::TX);
if (!this->wait_for_state_(State::TX, 50)) {
ESP_LOGW(TAG, "Timed out waiting for TX state!");
}
}
void CC1101Component::begin_rx() {
ESP_LOGV(TAG, "Beginning RX sequence");
this->strobe_(Command::RX);
}
void CC1101Component::reset() {
this->strobe_(Command::RES);
this->setup();
}
void CC1101Component::set_idle() {
ESP_LOGV(TAG, "Setting IDLE state");
this->enter_idle_();
}
void CC1101Component::set_gdo0_config(uint8_t value) {
this->state_.GDO0_CFG = value;
if (this->initialized_) {
this->write_(Register::IOCFG0);
}
}
void CC1101Component::set_gdo2_config(uint8_t value) {
this->state_.GDO2_CFG = value;
if (this->initialized_) {
this->write_(Register::IOCFG2);
}
}
bool CC1101Component::wait_for_state_(State target_state, uint32_t timeout_ms) {
uint32_t start = millis();
while (millis() - start < timeout_ms) {
this->read_(Register::MARCSTATE);
State s = static_cast<State>(this->state_.MARC_STATE);
if (s == target_state) {
return true;
}
delayMicroseconds(100);
}
return false;
}
void CC1101Component::enter_idle_() {
this->strobe_(Command::IDLE);
this->wait_for_state_(State::IDLE);
}
uint8_t CC1101Component::strobe_(Command cmd) {
uint8_t index = static_cast<uint8_t>(cmd);
if (cmd < Command::RES || cmd > Command::NOP) {
return 0xFF;
}
this->enable();
uint8_t status_byte = this->transfer_byte(index);
this->disable();
return status_byte;
}
void CC1101Component::write_(Register reg) {
uint8_t index = static_cast<uint8_t>(reg);
this->enable();
this->write_byte(index);
this->write_array(&this->state_.regs()[index], 1);
this->disable();
}
void CC1101Component::write_(Register reg, uint8_t value) {
uint8_t index = static_cast<uint8_t>(reg);
this->state_.regs()[index] = value;
this->write_(reg);
}
void CC1101Component::write_(Register reg, const uint8_t *buffer, size_t length) {
uint8_t index = static_cast<uint8_t>(reg);
this->enable();
this->write_byte(index | BUS_WRITE | BUS_BURST);
this->write_array(buffer, length);
this->disable();
}
void CC1101Component::read_(Register reg) {
uint8_t index = static_cast<uint8_t>(reg);
this->enable();
this->write_byte(index | BUS_READ | BUS_BURST);
this->state_.regs()[index] = this->transfer_byte(0);
this->disable();
}
void CC1101Component::read_(Register reg, uint8_t *buffer, size_t length) {
uint8_t index = static_cast<uint8_t>(reg);
this->enable();
this->write_byte(index | BUS_READ | BUS_BURST);
this->read_array(buffer, length);
this->disable();
}
// Setters
void CC1101Component::set_output_power(float value) {
this->output_power_requested_ = value;
int32_t freq = static_cast<int32_t>(this->state_.FREQ2 << 16 | this->state_.FREQ1 << 8 | this->state_.FREQ0) *
XTAL_FREQUENCY / (1 << 16);
uint8_t a = 0xC0;
if (freq >= 300000 && freq <= 348000) {
a = PowerTableItem::find(PA_TABLE_315, sizeof(PA_TABLE_315) / sizeof(PA_TABLE_315[0]), value);
} else if (freq >= 378000 && freq <= 464000) {
a = PowerTableItem::find(PA_TABLE_433, sizeof(PA_TABLE_433) / sizeof(PA_TABLE_433[0]), value);
} else if (freq >= 779000 && freq < 900000) {
a = PowerTableItem::find(PA_TABLE_868, sizeof(PA_TABLE_868) / sizeof(PA_TABLE_868[0]), value);
} else if (freq >= 900000 && freq <= 928000) {
a = PowerTableItem::find(PA_TABLE_915, sizeof(PA_TABLE_915) / sizeof(PA_TABLE_915[0]), value);
}
if (static_cast<Modulation>(this->state_.MOD_FORMAT) == Modulation::MODULATION_ASK_OOK) {
this->pa_table_[0] = 0;
this->pa_table_[1] = a;
} else {
this->pa_table_[0] = a;
this->pa_table_[1] = 0;
}
this->output_power_effective_ = value;
if (this->initialized_) {
this->write_(Register::PATABLE, this->pa_table_, sizeof(this->pa_table_));
}
}
void CC1101Component::set_rx_attenuation(RxAttenuation value) {
this->state_.CLOSE_IN_RX = static_cast<uint8_t>(value);
if (this->initialized_) {
this->write_(Register::FIFOTHR);
}
}
void CC1101Component::set_dc_blocking_filter(bool value) {
this->state_.DEM_DCFILT_OFF = value ? 0 : 1;
if (this->initialized_) {
this->write_(Register::MDMCFG2);
}
}
void CC1101Component::set_frequency(float value) {
int32_t freq = static_cast<int32_t>(value * (1 << 16) / XTAL_FREQUENCY);
this->state_.FREQ2 = static_cast<uint8_t>(freq >> 16);
this->state_.FREQ1 = static_cast<uint8_t>(freq >> 8);
this->state_.FREQ0 = static_cast<uint8_t>(freq);
if (this->initialized_) {
this->enter_idle_();
this->write_(Register::FREQ2);
this->write_(Register::FREQ1);
this->write_(Register::FREQ0);
this->strobe_(Command::RX);
}
}
void CC1101Component::set_if_frequency(float value) {
this->state_.FREQ_IF = value * (1 << 10) / XTAL_FREQUENCY;
if (this->initialized_) {
this->write_(Register::FSCTRL1);
}
}
void CC1101Component::set_filter_bandwidth(float value) {
uint8_t e;
uint32_t m;
split_float(XTAL_FREQUENCY / (value * 8), 2, e, m);
this->state_.CHANBW_E = e;
this->state_.CHANBW_M = static_cast<uint8_t>(m);
if (this->initialized_) {
this->write_(Register::MDMCFG4);
}
}
void CC1101Component::set_channel(uint8_t value) {
this->state_.CHANNR = value;
if (this->initialized_) {
this->enter_idle_();
this->write_(Register::CHANNR);
this->strobe_(Command::RX);
}
}
void CC1101Component::set_channel_spacing(float value) {
uint8_t e;
uint32_t m;
split_float(value * (1 << 18) / XTAL_FREQUENCY, 8, e, m);
this->state_.CHANSPC_E = e;
this->state_.CHANSPC_M = static_cast<uint8_t>(m);
if (this->initialized_) {
this->write_(Register::MDMCFG1);
this->write_(Register::MDMCFG0);
}
}
void CC1101Component::set_fsk_deviation(float value) {
uint8_t e;
uint32_t m;
split_float(value * (1 << 17) / XTAL_FREQUENCY, 3, e, m);
this->state_.DEVIATION_E = e;
this->state_.DEVIATION_M = static_cast<uint8_t>(m);
if (this->initialized_) {
this->write_(Register::DEVIATN);
}
}
void CC1101Component::set_msk_deviation(uint8_t value) {
this->state_.DEVIATION_E = 0;
this->state_.DEVIATION_M = value - 1;
if (this->initialized_) {
this->write_(Register::DEVIATN);
}
}
void CC1101Component::set_symbol_rate(float value) {
uint8_t e;
uint32_t m;
split_float(value * (1 << 28) / (XTAL_FREQUENCY * 1000), 8, e, m);
this->state_.DRATE_E = e;
this->state_.DRATE_M = static_cast<uint8_t>(m);
if (this->initialized_) {
this->write_(Register::MDMCFG4);
this->write_(Register::MDMCFG3);
}
}
void CC1101Component::set_sync_mode(SyncMode value) {
this->state_.SYNC_MODE = static_cast<uint8_t>(value);
if (this->initialized_) {
this->write_(Register::MDMCFG2);
}
}
void CC1101Component::set_carrier_sense_above_threshold(bool value) {
this->state_.CARRIER_SENSE_ABOVE_THRESHOLD = value ? 1 : 0;
if (this->initialized_) {
this->write_(Register::MDMCFG2);
}
}
void CC1101Component::set_modulation_type(Modulation value) {
this->state_.MOD_FORMAT = static_cast<uint8_t>(value);
this->state_.PA_POWER = value == Modulation::MODULATION_ASK_OOK ? 1 : 0;
if (this->initialized_) {
this->enter_idle_();
this->write_(Register::MDMCFG2);
this->write_(Register::FREND0);
this->strobe_(Command::RX);
}
}
void CC1101Component::set_manchester(bool value) {
this->state_.MANCHESTER_EN = value ? 1 : 0;
if (this->initialized_) {
this->write_(Register::MDMCFG2);
}
}
void CC1101Component::set_num_preamble(uint8_t value) {
this->state_.NUM_PREAMBLE = value;
if (this->initialized_) {
this->write_(Register::MDMCFG1);
}
}
void CC1101Component::set_sync1(uint8_t value) {
this->state_.SYNC1 = value;
if (this->initialized_) {
this->write_(Register::SYNC1);
}
}
void CC1101Component::set_sync0(uint8_t value) {
this->state_.SYNC0 = value;
if (this->initialized_) {
this->write_(Register::SYNC0);
}
}
void CC1101Component::set_pktlen(uint8_t value) {
this->state_.PKTLEN = value;
if (this->initialized_) {
this->write_(Register::PKTLEN);
}
}
void CC1101Component::set_magn_target(MagnTarget value) {
this->state_.MAGN_TARGET = static_cast<uint8_t>(value);
if (this->initialized_) {
this->write_(Register::AGCCTRL2);
}
}
void CC1101Component::set_max_lna_gain(MaxLnaGain value) {
this->state_.MAX_LNA_GAIN = static_cast<uint8_t>(value);
if (this->initialized_) {
this->write_(Register::AGCCTRL2);
}
}
void CC1101Component::set_max_dvga_gain(MaxDvgaGain value) {
this->state_.MAX_DVGA_GAIN = static_cast<uint8_t>(value);
if (this->initialized_) {
this->write_(Register::AGCCTRL2);
}
}
void CC1101Component::set_carrier_sense_abs_thr(int8_t value) {
this->state_.CARRIER_SENSE_ABS_THR = static_cast<uint8_t>(value & 0b1111);
if (this->initialized_) {
this->write_(Register::AGCCTRL1);
}
}
void CC1101Component::set_carrier_sense_rel_thr(CarrierSenseRelThr value) {
this->state_.CARRIER_SENSE_REL_THR = static_cast<uint8_t>(value);
if (this->initialized_) {
this->write_(Register::AGCCTRL1);
}
}
void CC1101Component::set_lna_priority(bool value) {
this->state_.AGC_LNA_PRIORITY = value ? 1 : 0;
if (this->initialized_) {
this->write_(Register::AGCCTRL1);
}
}
void CC1101Component::set_filter_length_fsk_msk(FilterLengthFskMsk value) {
this->state_.FILTER_LENGTH = static_cast<uint8_t>(value);
if (this->initialized_) {
this->write_(Register::AGCCTRL0);
}
}
void CC1101Component::set_filter_length_ask_ook(FilterLengthAskOok value) {
this->state_.FILTER_LENGTH = static_cast<uint8_t>(value);
if (this->initialized_) {
this->write_(Register::AGCCTRL0);
}
}
void CC1101Component::set_freeze(Freeze value) {
this->state_.AGC_FREEZE = static_cast<uint8_t>(value);
if (this->initialized_) {
this->write_(Register::AGCCTRL0);
}
}
void CC1101Component::set_wait_time(WaitTime value) {
this->state_.WAIT_TIME = static_cast<uint8_t>(value);
if (this->initialized_) {
this->write_(Register::AGCCTRL0);
}
}
void CC1101Component::set_hyst_level(HystLevel value) {
this->state_.HYST_LEVEL = static_cast<uint8_t>(value);
if (this->initialized_) {
this->write_(Register::AGCCTRL0);
}
}
} // namespace esphome::cc1101