1
0
mirror of https://github.com/esphome/esphome.git synced 2025-03-25 03:58:23 +00:00
esphome/esphome/components/vl53l0x/vl53l0x_sensor.cpp
rspaargaren 83a12d980e
Vl53 long range (#1055)
* Update vl53l0x_sensor.cpp

Changed values for long range support

* added true / false option for long range detection

* debug missing ,

* further debug option long_range

* Travis updates

* added travis tests

* Travis removed space should be good now

* update to trigger travis again

* added old test files for PR

* added vl5310x sensor for compile testing

* fix variable names

Co-authored-by: Guillermo Ruffino <glm.net@gmail.com>
2020-06-28 18:47:43 -03:00

263 lines
5.7 KiB
C++

#include "vl53l0x_sensor.h"
#include "esphome/core/log.h"
/*
* Most of the code in this integration is based on the VL53L0x library
* by Pololu (Pololu Corporation), which in turn is based on the VL53L0X
* API from ST.
*
* For more information about licensing, please view the included LICENSE.txt file
* in the vl53l0x integration directory.
*/
namespace esphome {
namespace vl53l0x {
static const char *TAG = "vl53l0x";
void VL53L0XSensor::dump_config() {
LOG_SENSOR("", "VL53L0X", this);
LOG_UPDATE_INTERVAL(this);
LOG_I2C_DEVICE(this);
}
void VL53L0XSensor::setup() {
reg(0x89) |= 0x01;
reg(0x88) = 0x00;
reg(0x80) = 0x01;
reg(0xFF) = 0x01;
reg(0x00) = 0x00;
stop_variable_ = reg(0x91).get();
reg(0x00) = 0x01;
reg(0xFF) = 0x00;
reg(0x80) = 0x00;
reg(0x60) |= 0x12;
if (this->long_range_)
this->signal_rate_limit_ = 0.1;
auto rate_value = static_cast<uint16_t>(signal_rate_limit_ * 128);
write_byte_16(0x44, rate_value);
reg(0x01) = 0xFF;
// getSpadInfo()
reg(0x80) = 0x01;
reg(0xFF) = 0x01;
reg(0x00) = 0x00;
reg(0xFF) = 0x06;
reg(0x83) |= 0x04;
reg(0xFF) = 0x07;
reg(0x81) = 0x01;
reg(0x80) = 0x01;
reg(0x94) = 0x6B;
reg(0x83) = 0x00;
while (reg(0x83).get() == 0x00)
yield();
reg(0x83) = 0x01;
uint8_t tmp = reg(0x92).get();
uint8_t spad_count = tmp & 0x7F;
bool spad_type_is_aperture = tmp & 0x80;
reg(0x81) = 0x00;
reg(0xFF) = 0x06;
reg(0x83) &= ~0x04;
reg(0xFF) = 0x01;
reg(0x00) = 0x01;
reg(0xFF) = 0x00;
reg(0x80) = 0x00;
uint8_t ref_spad_map[6];
this->read_bytes(0xB0, ref_spad_map, 6);
reg(0xFF) = 0x01;
reg(0x4F) = 0x00;
reg(0x4E) = 0x2C;
reg(0xFF) = 0x00;
reg(0xB6) = 0xB4;
uint8_t first_spad_to_enable = spad_type_is_aperture ? 12 : 0;
uint8_t spads_enabled = 0;
for (int i = 0; i < 48; i++) {
uint8_t &val = ref_spad_map[i / 8];
uint8_t mask = 1 << (i % 8);
if (i < first_spad_to_enable || spads_enabled == spad_count)
val &= ~mask;
else if (val & mask)
spads_enabled += 1;
}
this->write_bytes(0xB0, ref_spad_map, 6);
reg(0xFF) = 0x01;
reg(0x00) = 0x00;
reg(0xFF) = 0x00;
reg(0x09) = 0x00;
reg(0x10) = 0x00;
reg(0x11) = 0x00;
reg(0x24) = 0x01;
reg(0x25) = 0xFF;
reg(0x75) = 0x00;
reg(0xFF) = 0x01;
reg(0x4E) = 0x2C;
reg(0x48) = 0x00;
reg(0x30) = 0x20;
reg(0xFF) = 0x00;
if (this->long_range_) {
reg(0x30) = 0x07; // WAS 0x09
} else {
reg(0x30) = 0x09;
}
reg(0x54) = 0x00;
reg(0x31) = 0x04;
reg(0x32) = 0x03;
reg(0x40) = 0x83;
reg(0x46) = 0x25;
reg(0x60) = 0x00;
reg(0x27) = 0x00;
reg(0x50) = 0x06;
reg(0x51) = 0x00;
reg(0x52) = 0x96;
reg(0x56) = 0x08;
if (this->long_range_) {
reg(0x57) = 0x50; // was 0x30
} else {
reg(0x57) = 0x30;
}
reg(0x61) = 0x00;
reg(0x62) = 0x00;
reg(0x64) = 0x00;
reg(0x65) = 0x00;
reg(0x66) = 0xA0;
reg(0xFF) = 0x01;
reg(0x22) = 0x32;
reg(0x47) = 0x14;
reg(0x49) = 0xFF;
reg(0x4A) = 0x00;
reg(0xFF) = 0x00;
reg(0x7A) = 0x0A;
reg(0x7B) = 0x00;
reg(0x78) = 0x21;
reg(0xFF) = 0x01;
reg(0x23) = 0x34;
reg(0x42) = 0x00;
reg(0x44) = 0xFF;
reg(0x45) = 0x26;
reg(0x46) = 0x05;
reg(0x40) = 0x40;
reg(0x0E) = 0x06;
reg(0x20) = 0x1A;
reg(0x43) = 0x40;
reg(0xFF) = 0x00;
reg(0x34) = 0x03;
reg(0x35) = 0x44;
reg(0xFF) = 0x01;
reg(0x31) = 0x04;
reg(0x4B) = 0x09;
reg(0x4C) = 0x05;
reg(0x4D) = 0x04;
reg(0xFF) = 0x00;
reg(0x44) = 0x00;
reg(0x45) = 0x20;
reg(0x47) = 0x08;
if (this->long_range_) {
reg(0x48) = 0x48; // was 0x28
} else {
reg(0x48) = 0x28;
}
reg(0x67) = 0x00;
reg(0x70) = 0x04;
reg(0x71) = 0x01;
reg(0x72) = 0xFE;
reg(0x76) = 0x00;
reg(0x77) = 0x00;
reg(0xFF) = 0x01;
reg(0x0D) = 0x01;
reg(0xFF) = 0x00;
reg(0x80) = 0x01;
reg(0x01) = 0xF8;
reg(0xFF) = 0x01;
reg(0x8E) = 0x01;
reg(0x00) = 0x01;
reg(0xFF) = 0x00;
reg(0x80) = 0x00;
reg(0x0A) = 0x04;
reg(0x84) &= ~0x10;
reg(0x0B) = 0x01;
measurement_timing_budget_us_ = get_measurement_timing_budget_();
reg(0x01) = 0xE8;
set_measurement_timing_budget_(measurement_timing_budget_us_);
reg(0x01) = 0x01;
if (!perform_single_ref_calibration_(0x40)) {
ESP_LOGW(TAG, "1st reference calibration failed!");
this->mark_failed();
return;
}
reg(0x01) = 0x02;
if (!perform_single_ref_calibration_(0x00)) {
ESP_LOGW(TAG, "2nd reference calibration failed!");
this->mark_failed();
return;
}
reg(0x01) = 0xE8;
}
void VL53L0XSensor::update() {
if (this->initiated_read_ || this->waiting_for_interrupt_) {
this->publish_state(NAN);
this->status_set_warning();
}
// initiate single shot measurement
reg(0x80) = 0x01;
reg(0xFF) = 0x01;
reg(0x00) = 0x00;
reg(0x91) = stop_variable_;
reg(0x00) = 0x01;
reg(0xFF) = 0x00;
reg(0x80) = 0x00;
reg(0x00) = 0x01;
this->waiting_for_interrupt_ = false;
this->initiated_read_ = true;
// wait for timeout
}
void VL53L0XSensor::loop() {
if (this->initiated_read_) {
if (reg(0x00).get() & 0x01) {
// waiting
} else {
// done
// wait until reg(0x13) & 0x07 is set
this->initiated_read_ = false;
this->waiting_for_interrupt_ = true;
}
}
if (this->waiting_for_interrupt_) {
if (reg(0x13).get() & 0x07) {
uint16_t range_mm;
this->read_byte_16(0x14 + 10, &range_mm);
reg(0x0B) = 0x01;
this->waiting_for_interrupt_ = false;
if (range_mm >= 8190) {
ESP_LOGW(TAG, "'%s' - Distance is out of range, please move the target closer", this->name_.c_str());
this->publish_state(NAN);
return;
}
float range_m = range_mm / 1e3f;
ESP_LOGD(TAG, "'%s' - Got distance %.3f m", this->name_.c_str(), range_m);
this->publish_state(range_m);
}
}
}
} // namespace vl53l0x
} // namespace esphome