mirror of
https://github.com/esphome/esphome.git
synced 2025-04-07 03:10:27 +01:00
179 lines
7.1 KiB
C++
179 lines
7.1 KiB
C++
#include "pulse_meter_sensor.h"
|
|
#include "esphome/core/log.h"
|
|
|
|
namespace esphome {
|
|
namespace pulse_meter {
|
|
|
|
static const char *const TAG = "pulse_meter";
|
|
|
|
void PulseMeterSensor::setup() {
|
|
this->pin_->setup();
|
|
this->isr_pin_ = pin_->to_isr();
|
|
this->pin_->attach_interrupt(PulseMeterSensor::gpio_intr, this, gpio::INTERRUPT_ANY_EDGE);
|
|
|
|
this->last_detected_edge_us_ = 0;
|
|
this->last_valid_edge_us_ = 0;
|
|
this->pulse_width_us_ = 0;
|
|
this->sensor_is_high_ = this->isr_pin_.digital_read();
|
|
this->has_valid_edge_ = false;
|
|
this->pending_state_change_ = NONE;
|
|
}
|
|
// In PULSE mode we set a flag (pending_state_change_) for every interrupt
|
|
// that constitutes a state change. In the loop() method we check if a time
|
|
// interval greater than the internal_filter time has passed without any
|
|
// interrupts.
|
|
|
|
void PulseMeterSensor::loop() {
|
|
// Get a snapshot of the needed volatile sensor values, to make sure they are not
|
|
// modified by the ISR while we are in the loop() method. If they are changed
|
|
// after we the variable "now" has been set, overflow will occur in the
|
|
// subsequent arithmetic
|
|
const bool has_valid_edge = this->has_valid_edge_;
|
|
const uint32_t last_detected_edge_us = this->last_detected_edge_us_;
|
|
const uint32_t last_valid_edge_us = this->last_valid_edge_us_;
|
|
// Get the current time after the snapshot of saved times
|
|
const uint32_t now = micros();
|
|
|
|
this->handle_state_change_(now, last_detected_edge_us, last_valid_edge_us, has_valid_edge);
|
|
|
|
// If we've exceeded our timeout interval without receiving any pulses, assume 0 pulses/min until
|
|
// we get at least two valid pulses.
|
|
const uint32_t time_since_valid_edge_us = now - last_detected_edge_us;
|
|
if ((has_valid_edge) && (time_since_valid_edge_us > this->timeout_us_)) {
|
|
ESP_LOGD(TAG, "No pulse detected for %us, assuming 0 pulses/min", time_since_valid_edge_us / 1000000);
|
|
|
|
this->last_valid_edge_us_ = 0;
|
|
this->pulse_width_us_ = 0;
|
|
this->has_valid_edge_ = false;
|
|
this->last_detected_edge_us_ = 0;
|
|
}
|
|
|
|
// We quantize our pulse widths to 1 ms to avoid unnecessary jitter
|
|
const uint32_t pulse_width_ms = this->pulse_width_us_ / 1000;
|
|
if (this->pulse_width_dedupe_.next(pulse_width_ms)) {
|
|
if (pulse_width_ms == 0) {
|
|
// Treat 0 pulse width as 0 pulses/min (normally because we've not detected any pulses for a while)
|
|
this->publish_state(0);
|
|
} else {
|
|
// Calculate pulses/min from the pulse width in ms
|
|
this->publish_state((60.0f * 1000.0f) / pulse_width_ms);
|
|
}
|
|
}
|
|
|
|
if (this->total_sensor_ != nullptr) {
|
|
const uint32_t total = this->total_pulses_;
|
|
if (this->total_dedupe_.next(total)) {
|
|
this->total_sensor_->publish_state(total);
|
|
}
|
|
}
|
|
}
|
|
|
|
void PulseMeterSensor::set_total_pulses(uint32_t pulses) { this->total_pulses_ = pulses; }
|
|
|
|
void PulseMeterSensor::dump_config() {
|
|
LOG_SENSOR("", "Pulse Meter", this);
|
|
LOG_PIN(" Pin: ", this->pin_);
|
|
if (this->filter_mode_ == FILTER_EDGE) {
|
|
ESP_LOGCONFIG(TAG, " Filtering rising edges less than %u µs apart", this->filter_us_);
|
|
} else {
|
|
ESP_LOGCONFIG(TAG, " Filtering pulses shorter than %u µs", this->filter_us_);
|
|
}
|
|
ESP_LOGCONFIG(TAG, " Assuming 0 pulses/min after not receiving a pulse for %us", this->timeout_us_ / 1000000);
|
|
}
|
|
|
|
void IRAM_ATTR PulseMeterSensor::gpio_intr(PulseMeterSensor *sensor) {
|
|
// This is an interrupt handler - we can't call any virtual method from this method
|
|
// Get the current time before we do anything else so the measurements are consistent
|
|
const uint32_t now = micros();
|
|
const bool pin_val = sensor->isr_pin_.digital_read();
|
|
|
|
if (sensor->filter_mode_ == FILTER_EDGE) {
|
|
// We only look at rising edges
|
|
if (!pin_val) {
|
|
return;
|
|
}
|
|
// Check to see if we should filter this edge out
|
|
if ((now - sensor->last_detected_edge_us_) >= sensor->filter_us_) {
|
|
// Don't measure the first valid pulse (we need at least two pulses to measure the width)
|
|
if (sensor->has_valid_edge_) {
|
|
sensor->pulse_width_us_ = (now - sensor->last_valid_edge_us_);
|
|
}
|
|
sensor->total_pulses_++;
|
|
sensor->last_valid_edge_us_ = now;
|
|
sensor->has_valid_edge_ = true;
|
|
}
|
|
sensor->last_detected_edge_us_ = now;
|
|
} else {
|
|
// Filter Mode is PULSE
|
|
const uint32_t delta_t_us = now - sensor->last_detected_edge_us_;
|
|
// We need to check if we have missed to handle a state change in the
|
|
// loop() function. This can happen when the filter_us value is less than
|
|
// the loop() interval, which is ~50-60ms
|
|
// The section below is essentially a modified repeat of the
|
|
// handle_state_change method. Ideally i would refactor and call the
|
|
// method here as well. However functions called in ISRs need to meet
|
|
// strict criteria and I don't think the methos would meet them.
|
|
if (sensor->pending_state_change_ != NONE && (delta_t_us > sensor->filter_us_)) {
|
|
// We have missed to handle a state change in the loop function.
|
|
sensor->sensor_is_high_ = sensor->pending_state_change_ == TO_HIGH;
|
|
if (sensor->sensor_is_high_) {
|
|
// We need to handle a pulse that would have been missed by the loop function
|
|
sensor->total_pulses_++;
|
|
if (sensor->has_valid_edge_) {
|
|
sensor->pulse_width_us_ = sensor->last_detected_edge_us_ - sensor->last_valid_edge_us_;
|
|
sensor->has_valid_edge_ = true;
|
|
sensor->last_valid_edge_us_ = sensor->last_detected_edge_us_;
|
|
}
|
|
}
|
|
} // End of checking for and handling of change in state
|
|
|
|
// Ignore false edges that may be caused by bouncing and exit the ISR ASAP
|
|
if (pin_val == sensor->sensor_is_high_) {
|
|
sensor->pending_state_change_ = NONE;
|
|
return;
|
|
}
|
|
sensor->pending_state_change_ = pin_val ? TO_HIGH : TO_LOW;
|
|
sensor->last_detected_edge_us_ = now;
|
|
}
|
|
}
|
|
|
|
void PulseMeterSensor::handle_state_change_(uint32_t now, uint32_t last_detected_edge_us, uint32_t last_valid_edge_us,
|
|
bool has_valid_edge) {
|
|
if (this->pending_state_change_ == NONE) {
|
|
return;
|
|
}
|
|
|
|
const bool pin_val = this->isr_pin_.digital_read();
|
|
if (pin_val == this->sensor_is_high_) {
|
|
// Most likely caused by high frequency bouncing. Theoretically we should
|
|
// expect interrupts of alternating state. Here we are registering an
|
|
// interrupt with no change in state. Another interrupt will likely trigger
|
|
// just after this one and have an alternate state.
|
|
this->pending_state_change_ = NONE;
|
|
return;
|
|
}
|
|
|
|
if ((now - last_detected_edge_us) > this->filter_us_) {
|
|
this->sensor_is_high_ = pin_val;
|
|
ESP_LOGVV(TAG, "State is now %s", pin_val ? "high" : "low");
|
|
|
|
// Increment with valid rising edges only
|
|
if (pin_val) {
|
|
this->total_pulses_++;
|
|
ESP_LOGVV(TAG, "Incremented pulses to %u", this->total_pulses_);
|
|
|
|
if (has_valid_edge) {
|
|
this->pulse_width_us_ = last_detected_edge_us - last_valid_edge_us;
|
|
ESP_LOGVV(TAG, "Set pulse width to %u", this->pulse_width_us_);
|
|
}
|
|
this->has_valid_edge_ = true;
|
|
this->last_valid_edge_us_ = last_detected_edge_us;
|
|
ESP_LOGVV(TAG, "last_valid_edge_us_ is now %u", this->last_valid_edge_us_);
|
|
}
|
|
this->pending_state_change_ = NONE;
|
|
}
|
|
}
|
|
|
|
} // namespace pulse_meter
|
|
} // namespace esphome
|