1
0
mirror of https://github.com/esphome/esphome.git synced 2025-10-12 14:53:49 +01:00
Files
esphome/esphome/components/i2s_audio/speaker/i2s_audio_speaker.cpp

729 lines
27 KiB
C++

#include "i2s_audio_speaker.h"
#ifdef USE_ESP32
#ifdef USE_I2S_LEGACY
#include <driver/i2s.h>
#else
#include <driver/i2s_std.h>
#endif
#include "esphome/components/audio/audio.h"
#include "esphome/components/audio/audio_transfer_buffer.h"
#include "esphome/core/application.h"
#include "esphome/core/hal.h"
#include "esphome/core/log.h"
#include "esp_timer.h"
namespace esphome {
namespace i2s_audio {
static const uint32_t DMA_BUFFER_DURATION_MS = 15;
static const size_t DMA_BUFFERS_COUNT = 4;
static const size_t TASK_STACK_SIZE = 4096;
static const ssize_t TASK_PRIORITY = 19;
static const size_t I2S_EVENT_QUEUE_COUNT = DMA_BUFFERS_COUNT + 1;
static const char *const TAG = "i2s_audio.speaker";
enum SpeakerEventGroupBits : uint32_t {
COMMAND_START = (1 << 0), // indicates loop should start speaker task
COMMAND_STOP = (1 << 1), // stops the speaker task
COMMAND_STOP_GRACEFULLY = (1 << 2), // Stops the speaker task once all data has been written
TASK_STARTING = (1 << 10),
TASK_RUNNING = (1 << 11),
TASK_STOPPING = (1 << 12),
TASK_STOPPED = (1 << 13),
ERR_ESP_NO_MEM = (1 << 19),
WARN_DROPPED_EVENT = (1 << 20),
ALL_BITS = 0x00FFFFFF, // All valid FreeRTOS event group bits
};
// Lists the Q15 fixed point scaling factor for volume reduction.
// Has 100 values representing silence and a reduction [49, 48.5, ... 0.5, 0] dB.
// dB to PCM scaling factor formula: floating_point_scale_factor = 2^(-db/6.014)
// float to Q15 fixed point formula: q15_scale_factor = floating_point_scale_factor * 2^(15)
static const std::vector<int16_t> Q15_VOLUME_SCALING_FACTORS = {
0, 116, 122, 130, 137, 146, 154, 163, 173, 183, 194, 206, 218, 231, 244,
259, 274, 291, 308, 326, 345, 366, 388, 411, 435, 461, 488, 517, 548, 580,
615, 651, 690, 731, 774, 820, 868, 920, 974, 1032, 1094, 1158, 1227, 1300, 1377,
1459, 1545, 1637, 1734, 1837, 1946, 2061, 2184, 2313, 2450, 2596, 2750, 2913, 3085, 3269,
3462, 3668, 3885, 4116, 4360, 4619, 4893, 5183, 5490, 5816, 6161, 6527, 6914, 7324, 7758,
8218, 8706, 9222, 9770, 10349, 10963, 11613, 12302, 13032, 13805, 14624, 15491, 16410, 17384, 18415,
19508, 20665, 21891, 23189, 24565, 26022, 27566, 29201, 30933, 32767};
void I2SAudioSpeaker::setup() {
this->event_group_ = xEventGroupCreate();
if (this->event_group_ == nullptr) {
ESP_LOGE(TAG, "Failed to create event group");
this->mark_failed();
return;
}
}
void I2SAudioSpeaker::dump_config() {
ESP_LOGCONFIG(TAG,
"Speaker:\n"
" Pin: %d\n"
" Buffer duration: %" PRIu32,
static_cast<int8_t>(this->dout_pin_), this->buffer_duration_ms_);
if (this->timeout_.has_value()) {
ESP_LOGCONFIG(TAG, " Timeout: %" PRIu32 " ms", this->timeout_.value());
}
#ifdef USE_I2S_LEGACY
#if SOC_I2S_SUPPORTS_DAC
ESP_LOGCONFIG(TAG, " Internal DAC mode: %d", static_cast<int8_t>(this->internal_dac_mode_));
#endif
ESP_LOGCONFIG(TAG, " Communication format: %d", static_cast<int8_t>(this->i2s_comm_fmt_));
#else
ESP_LOGCONFIG(TAG, " Communication format: %s", this->i2s_comm_fmt_.c_str());
#endif
}
void I2SAudioSpeaker::loop() {
uint32_t event_group_bits = xEventGroupGetBits(this->event_group_);
if ((event_group_bits & SpeakerEventGroupBits::COMMAND_START) && (this->state_ == speaker::STATE_STOPPED)) {
this->state_ = speaker::STATE_STARTING;
xEventGroupClearBits(this->event_group_, SpeakerEventGroupBits::COMMAND_START);
}
// Handle the task's state
if (event_group_bits & SpeakerEventGroupBits::TASK_STARTING) {
ESP_LOGD(TAG, "Starting");
xEventGroupClearBits(this->event_group_, SpeakerEventGroupBits::TASK_STARTING);
}
if (event_group_bits & SpeakerEventGroupBits::TASK_RUNNING) {
ESP_LOGD(TAG, "Started");
xEventGroupClearBits(this->event_group_, SpeakerEventGroupBits::TASK_RUNNING);
this->state_ = speaker::STATE_RUNNING;
}
if (event_group_bits & SpeakerEventGroupBits::TASK_STOPPING) {
ESP_LOGD(TAG, "Stopping");
xEventGroupClearBits(this->event_group_, SpeakerEventGroupBits::TASK_STOPPING);
this->state_ = speaker::STATE_STOPPING;
}
if (event_group_bits & SpeakerEventGroupBits::TASK_STOPPED) {
ESP_LOGD(TAG, "Stopped");
vTaskDelete(this->speaker_task_handle_);
this->speaker_task_handle_ = nullptr;
this->stop_i2s_driver_();
xEventGroupClearBits(this->event_group_, SpeakerEventGroupBits::ALL_BITS);
this->status_clear_error();
this->state_ = speaker::STATE_STOPPED;
}
// Log any errors encounted by the task
if (event_group_bits & SpeakerEventGroupBits::ERR_ESP_NO_MEM) {
ESP_LOGE(TAG, "Not enough memory");
xEventGroupClearBits(this->event_group_, SpeakerEventGroupBits::ERR_ESP_NO_MEM);
}
// Warn if any playback timestamp events are dropped, which drastically reduces synced playback accuracy
if (event_group_bits & SpeakerEventGroupBits::WARN_DROPPED_EVENT) {
ESP_LOGW(TAG, "Event dropped, synchronized playback accuracy is reduced");
xEventGroupClearBits(this->event_group_, SpeakerEventGroupBits::WARN_DROPPED_EVENT);
}
// Handle the speaker's state
switch (this->state_) {
case speaker::STATE_STARTING:
if (this->status_has_error()) {
break;
}
if (this->start_i2s_driver_(this->audio_stream_info_) != ESP_OK) {
ESP_LOGE(TAG, "Driver failed to start; retrying in 1 second");
this->status_momentary_error("driver-faiure", 1000);
break;
}
if (this->speaker_task_handle_ == nullptr) {
xTaskCreate(I2SAudioSpeaker::speaker_task, "speaker_task", TASK_STACK_SIZE, (void *) this, TASK_PRIORITY,
&this->speaker_task_handle_);
if (this->speaker_task_handle_ == nullptr) {
ESP_LOGE(TAG, "Task failed to start, retrying in 1 second");
this->status_momentary_error("task-failure", 1000);
this->stop_i2s_driver_(); // Stops the driver to return the lock; will be reloaded in next attempt
}
}
break;
case speaker::STATE_RUNNING: // Intentional fallthrough
case speaker::STATE_STOPPING: // Intentional fallthrough
case speaker::STATE_STOPPED:
break;
}
}
void I2SAudioSpeaker::set_volume(float volume) {
this->volume_ = volume;
#ifdef USE_AUDIO_DAC
if (this->audio_dac_ != nullptr) {
if (volume > 0.0) {
this->audio_dac_->set_mute_off();
}
this->audio_dac_->set_volume(volume);
} else
#endif
{
// Fallback to software volume control by using a Q15 fixed point scaling factor
ssize_t decibel_index = remap<ssize_t, float>(volume, 0.0f, 1.0f, 0, Q15_VOLUME_SCALING_FACTORS.size() - 1);
this->q15_volume_factor_ = Q15_VOLUME_SCALING_FACTORS[decibel_index];
}
}
void I2SAudioSpeaker::set_mute_state(bool mute_state) {
this->mute_state_ = mute_state;
#ifdef USE_AUDIO_DAC
if (this->audio_dac_) {
if (mute_state) {
this->audio_dac_->set_mute_on();
} else {
this->audio_dac_->set_mute_off();
}
} else
#endif
{
if (mute_state) {
// Fallback to software volume control and scale by 0
this->q15_volume_factor_ = 0;
} else {
// Revert to previous volume when unmuting
this->set_volume(this->volume_);
}
}
}
size_t I2SAudioSpeaker::play(const uint8_t *data, size_t length, TickType_t ticks_to_wait) {
if (this->is_failed()) {
ESP_LOGE(TAG, "Setup failed; cannot play audio");
return 0;
}
if (this->state_ != speaker::STATE_RUNNING && this->state_ != speaker::STATE_STARTING) {
this->start();
}
if (this->state_ != speaker::STATE_RUNNING) {
// Unable to write data to a running speaker, so delay the max amount of time so it can get ready
vTaskDelay(ticks_to_wait);
ticks_to_wait = 0;
}
size_t bytes_written = 0;
if (this->state_ == speaker::STATE_RUNNING) {
std::shared_ptr<RingBuffer> temp_ring_buffer = this->audio_ring_buffer_.lock();
if (temp_ring_buffer.use_count() == 2) {
// Only the speaker task and this temp_ring_buffer own the ring buffer, so its safe to write to
bytes_written = temp_ring_buffer->write_without_replacement((void *) data, length, ticks_to_wait);
}
}
return bytes_written;
}
bool I2SAudioSpeaker::has_buffered_data() const {
if (this->audio_ring_buffer_.use_count() > 0) {
std::shared_ptr<RingBuffer> temp_ring_buffer = this->audio_ring_buffer_.lock();
return temp_ring_buffer->available() > 0;
}
return false;
}
void I2SAudioSpeaker::speaker_task(void *params) {
I2SAudioSpeaker *this_speaker = (I2SAudioSpeaker *) params;
xEventGroupSetBits(this_speaker->event_group_, SpeakerEventGroupBits::TASK_STARTING);
const uint32_t dma_buffers_duration_ms = DMA_BUFFER_DURATION_MS * DMA_BUFFERS_COUNT;
// Ensure ring buffer duration is at least the duration of all DMA buffers
const uint32_t ring_buffer_duration = std::max(dma_buffers_duration_ms, this_speaker->buffer_duration_ms_);
// The DMA buffers may have more bits per sample, so calculate buffer sizes based in the input audio stream info
const size_t ring_buffer_size = this_speaker->current_stream_info_.ms_to_bytes(ring_buffer_duration);
const uint32_t frames_to_fill_single_dma_buffer =
this_speaker->current_stream_info_.ms_to_frames(DMA_BUFFER_DURATION_MS);
const size_t bytes_to_fill_single_dma_buffer =
this_speaker->current_stream_info_.frames_to_bytes(frames_to_fill_single_dma_buffer);
bool successful_setup = false;
std::unique_ptr<audio::AudioSourceTransferBuffer> transfer_buffer =
audio::AudioSourceTransferBuffer::create(bytes_to_fill_single_dma_buffer);
if (transfer_buffer != nullptr) {
std::shared_ptr<RingBuffer> temp_ring_buffer = RingBuffer::create(ring_buffer_size);
if (temp_ring_buffer.use_count() == 1) {
transfer_buffer->set_source(temp_ring_buffer);
this_speaker->audio_ring_buffer_ = temp_ring_buffer;
successful_setup = true;
}
}
if (!successful_setup) {
xEventGroupSetBits(this_speaker->event_group_, SpeakerEventGroupBits::ERR_ESP_NO_MEM);
} else {
bool stop_gracefully = false;
bool tx_dma_underflow = true;
uint32_t frames_written = 0;
uint32_t last_data_received_time = millis();
xEventGroupSetBits(this_speaker->event_group_, SpeakerEventGroupBits::TASK_RUNNING);
while (this_speaker->pause_state_ || !this_speaker->timeout_.has_value() ||
(millis() - last_data_received_time) <= this_speaker->timeout_.value()) {
uint32_t event_group_bits = xEventGroupGetBits(this_speaker->event_group_);
if (event_group_bits & SpeakerEventGroupBits::COMMAND_STOP) {
xEventGroupClearBits(this_speaker->event_group_, SpeakerEventGroupBits::COMMAND_STOP);
break;
}
if (event_group_bits & SpeakerEventGroupBits::COMMAND_STOP_GRACEFULLY) {
xEventGroupClearBits(this_speaker->event_group_, SpeakerEventGroupBits::COMMAND_STOP_GRACEFULLY);
stop_gracefully = true;
}
if (this_speaker->audio_stream_info_ != this_speaker->current_stream_info_) {
// Audio stream info changed, stop the speaker task so it will restart with the proper settings.
break;
}
#ifdef USE_I2S_LEGACY
i2s_event_t i2s_event;
while (xQueueReceive(this_speaker->i2s_event_queue_, &i2s_event, 0)) {
if (i2s_event.type == I2S_EVENT_TX_Q_OVF) {
tx_dma_underflow = true;
}
}
#else
int64_t write_timestamp;
while (xQueueReceive(this_speaker->i2s_event_queue_, &write_timestamp, 0)) {
// Receives timing events from the I2S on_sent callback. If actual audio data was sent in this event, it passes
// on the timing info via the audio_output_callback.
uint32_t frames_sent = frames_to_fill_single_dma_buffer;
if (frames_to_fill_single_dma_buffer > frames_written) {
tx_dma_underflow = true;
frames_sent = frames_written;
const uint32_t frames_zeroed = frames_to_fill_single_dma_buffer - frames_written;
write_timestamp -= this_speaker->current_stream_info_.frames_to_microseconds(frames_zeroed);
} else {
tx_dma_underflow = false;
}
frames_written -= frames_sent;
if (frames_sent > 0) {
this_speaker->audio_output_callback_(frames_sent, write_timestamp);
}
}
#endif
if (this_speaker->pause_state_) {
// Pause state is accessed atomically, so thread safe
// Delay so the task yields, then skip transferring audio data
vTaskDelay(pdMS_TO_TICKS(DMA_BUFFER_DURATION_MS));
continue;
}
// Wait half the duration of the data already written to the DMA buffers for new audio data
// The millisecond helper modifies the frames_written variable, so use the microsecond helper and divide by 1000
const uint32_t read_delay =
(this_speaker->current_stream_info_.frames_to_microseconds(frames_written) / 1000) / 2;
uint8_t *new_data = transfer_buffer->get_buffer_end(); // track start of any newly copied bytes
size_t bytes_read = transfer_buffer->transfer_data_from_source(pdMS_TO_TICKS(read_delay));
if (bytes_read > 0) {
if (this_speaker->q15_volume_factor_ < INT16_MAX) {
// Apply the software volume adjustment by unpacking the sample into a Q31 fixed-point number, shifting it,
// multiplying by the volume factor, and packing the sample back into the original bytes per sample.
const size_t bytes_per_sample = this_speaker->current_stream_info_.samples_to_bytes(1);
const uint32_t len = bytes_read / bytes_per_sample;
// Use Q16 for samples with 1 or 2 bytes: shifted_sample * gain_factor is Q16 * Q15 -> Q31
int32_t shift = 15; // Q31 -> Q16
int32_t gain_factor = this_speaker->q15_volume_factor_; // Q15
if (bytes_per_sample >= 3) {
// Use Q23 for samples with 3 or 4 bytes: shifted_sample * gain_factor is Q23 * Q8 -> Q31
shift = 8; // Q31 -> Q23
gain_factor >>= 7; // Q15 -> Q8
}
for (uint32_t i = 0; i < len; ++i) {
int32_t sample =
audio::unpack_audio_sample_to_q31(&new_data[i * bytes_per_sample], bytes_per_sample); // Q31
sample >>= shift;
sample *= gain_factor; // Q31
audio::pack_q31_as_audio_sample(sample, &new_data[i * bytes_per_sample], bytes_per_sample);
}
}
#ifdef USE_ESP32_VARIANT_ESP32
// For ESP32 8/16 bit mono mode samples need to be switched.
if (this_speaker->current_stream_info_.get_channels() == 1 &&
this_speaker->current_stream_info_.get_bits_per_sample() <= 16) {
size_t len = bytes_read / sizeof(int16_t);
int16_t *tmp_buf = (int16_t *) new_data;
for (size_t i = 0; i < len; i += 2) {
int16_t tmp = tmp_buf[i];
tmp_buf[i] = tmp_buf[i + 1];
tmp_buf[i + 1] = tmp;
}
}
#endif
}
if (transfer_buffer->available() == 0) {
if (stop_gracefully && tx_dma_underflow) {
break;
}
vTaskDelay(pdMS_TO_TICKS(DMA_BUFFER_DURATION_MS / 2));
} else {
size_t bytes_written = 0;
#ifdef USE_I2S_LEGACY
if (this_speaker->current_stream_info_.get_bits_per_sample() == (uint8_t) this_speaker->bits_per_sample_) {
i2s_write(this_speaker->parent_->get_port(), transfer_buffer->get_buffer_start(),
transfer_buffer->available(), &bytes_written, pdMS_TO_TICKS(DMA_BUFFER_DURATION_MS));
} else if (this_speaker->current_stream_info_.get_bits_per_sample() <
(uint8_t) this_speaker->bits_per_sample_) {
i2s_write_expand(this_speaker->parent_->get_port(), transfer_buffer->get_buffer_start(),
transfer_buffer->available(), this_speaker->current_stream_info_.get_bits_per_sample(),
this_speaker->bits_per_sample_, &bytes_written, pdMS_TO_TICKS(DMA_BUFFER_DURATION_MS));
}
#else
if (tx_dma_underflow) {
// Temporarily disable channel and callback to reset the I2S driver's internal DMA buffer queue so timing
// callbacks are accurate. Preload the data.
i2s_channel_disable(this_speaker->tx_handle_);
const i2s_event_callbacks_t callbacks = {
.on_sent = nullptr,
};
i2s_channel_register_event_callback(this_speaker->tx_handle_, &callbacks, this_speaker);
i2s_channel_preload_data(this_speaker->tx_handle_, transfer_buffer->get_buffer_start(),
transfer_buffer->available(), &bytes_written);
} else {
// Audio is already playing, use regular I2S write to add to the DMA buffers
i2s_channel_write(this_speaker->tx_handle_, transfer_buffer->get_buffer_start(), transfer_buffer->available(),
&bytes_written, DMA_BUFFER_DURATION_MS);
}
#endif
if (bytes_written > 0) {
last_data_received_time = millis();
frames_written += this_speaker->current_stream_info_.bytes_to_frames(bytes_written);
transfer_buffer->decrease_buffer_length(bytes_written);
if (tx_dma_underflow) {
tx_dma_underflow = false;
#ifndef USE_I2S_LEGACY
// Reset the event queue timestamps
// Enable the on_sent callback to accurately track the timestamps of played audio
// Enable the I2S channel to start sending the preloaded audio
xQueueReset(this_speaker->i2s_event_queue_);
const i2s_event_callbacks_t callbacks = {
.on_sent = i2s_on_sent_cb,
};
i2s_channel_register_event_callback(this_speaker->tx_handle_, &callbacks, this_speaker);
i2s_channel_enable(this_speaker->tx_handle_);
#endif
}
#ifdef USE_I2S_LEGACY
// The legacy driver doesn't easily support the callback approach for timestamps, so fall back to a direct but
// less accurate approach.
this_speaker->audio_output_callback_(this_speaker->current_stream_info_.bytes_to_frames(bytes_written),
esp_timer_get_time() + dma_buffers_duration_ms * 1000);
#endif
}
}
}
}
xEventGroupSetBits(this_speaker->event_group_, SpeakerEventGroupBits::TASK_STOPPING);
if (transfer_buffer != nullptr) {
transfer_buffer.reset();
}
xEventGroupSetBits(this_speaker->event_group_, SpeakerEventGroupBits::TASK_STOPPED);
while (true) {
// Continuously delay until the loop method deletes the task
vTaskDelay(pdMS_TO_TICKS(10));
}
}
void I2SAudioSpeaker::start() {
if (!this->is_ready() || this->is_failed() || this->status_has_error())
return;
if ((this->state_ == speaker::STATE_STARTING) || (this->state_ == speaker::STATE_RUNNING))
return;
xEventGroupSetBits(this->event_group_, SpeakerEventGroupBits::COMMAND_START);
}
void I2SAudioSpeaker::stop() { this->stop_(false); }
void I2SAudioSpeaker::finish() { this->stop_(true); }
void I2SAudioSpeaker::stop_(bool wait_on_empty) {
if (this->is_failed())
return;
if (this->state_ == speaker::STATE_STOPPED)
return;
if (wait_on_empty) {
xEventGroupSetBits(this->event_group_, SpeakerEventGroupBits::COMMAND_STOP_GRACEFULLY);
} else {
xEventGroupSetBits(this->event_group_, SpeakerEventGroupBits::COMMAND_STOP);
}
}
esp_err_t I2SAudioSpeaker::start_i2s_driver_(audio::AudioStreamInfo &audio_stream_info) {
this->current_stream_info_ = audio_stream_info; // store the stream info settings the driver will use
#ifdef USE_I2S_LEGACY
if ((this->i2s_mode_ & I2S_MODE_SLAVE) && (this->sample_rate_ != audio_stream_info.get_sample_rate())) { // NOLINT
#else
if ((this->i2s_role_ & I2S_ROLE_SLAVE) && (this->sample_rate_ != audio_stream_info.get_sample_rate())) { // NOLINT
#endif
// Can't reconfigure I2S bus, so the sample rate must match the configured value
ESP_LOGE(TAG, "Audio stream settings are not compatible with this I2S configuration");
return ESP_ERR_NOT_SUPPORTED;
}
#ifdef USE_I2S_LEGACY
if ((i2s_bits_per_sample_t) audio_stream_info.get_bits_per_sample() > this->bits_per_sample_) {
#else
if (this->slot_bit_width_ != I2S_SLOT_BIT_WIDTH_AUTO &&
(i2s_slot_bit_width_t) audio_stream_info.get_bits_per_sample() > this->slot_bit_width_) {
#endif
// Currently can't handle the case when the incoming audio has more bits per sample than the configured value
ESP_LOGE(TAG, "Audio streams with more bits per sample than the I2S speaker's configuration is not supported");
return ESP_ERR_NOT_SUPPORTED;
}
if (!this->parent_->try_lock()) {
ESP_LOGE(TAG, "Parent I2S bus not free");
return ESP_ERR_INVALID_STATE;
}
uint32_t dma_buffer_length = audio_stream_info.ms_to_frames(DMA_BUFFER_DURATION_MS);
#ifdef USE_I2S_LEGACY
i2s_channel_fmt_t channel = this->channel_;
if (audio_stream_info.get_channels() == 1) {
if (this->channel_ == I2S_CHANNEL_FMT_ONLY_LEFT) {
channel = I2S_CHANNEL_FMT_ONLY_LEFT;
} else {
channel = I2S_CHANNEL_FMT_ONLY_RIGHT;
}
} else if (audio_stream_info.get_channels() == 2) {
channel = I2S_CHANNEL_FMT_RIGHT_LEFT;
}
i2s_driver_config_t config = {
.mode = (i2s_mode_t) (this->i2s_mode_ | I2S_MODE_TX),
.sample_rate = audio_stream_info.get_sample_rate(),
.bits_per_sample = this->bits_per_sample_,
.channel_format = channel,
.communication_format = this->i2s_comm_fmt_,
.intr_alloc_flags = ESP_INTR_FLAG_LEVEL1,
.dma_buf_count = DMA_BUFFERS_COUNT,
.dma_buf_len = (int) dma_buffer_length,
.use_apll = this->use_apll_,
.tx_desc_auto_clear = true,
.fixed_mclk = I2S_PIN_NO_CHANGE,
.mclk_multiple = this->mclk_multiple_,
.bits_per_chan = this->bits_per_channel_,
#if SOC_I2S_SUPPORTS_TDM
.chan_mask = (i2s_channel_t) (I2S_TDM_ACTIVE_CH0 | I2S_TDM_ACTIVE_CH1),
.total_chan = 2,
.left_align = false,
.big_edin = false,
.bit_order_msb = false,
.skip_msk = false,
#endif
};
#if SOC_I2S_SUPPORTS_DAC
if (this->internal_dac_mode_ != I2S_DAC_CHANNEL_DISABLE) {
config.mode = (i2s_mode_t) (config.mode | I2S_MODE_DAC_BUILT_IN);
}
#endif
esp_err_t err =
i2s_driver_install(this->parent_->get_port(), &config, I2S_EVENT_QUEUE_COUNT, &this->i2s_event_queue_);
if (err != ESP_OK) {
ESP_LOGE(TAG, "Failed to install I2S legacy driver");
// Failed to install the driver, so unlock the I2S port
this->parent_->unlock();
return err;
}
#if SOC_I2S_SUPPORTS_DAC
if (this->internal_dac_mode_ == I2S_DAC_CHANNEL_DISABLE) {
#endif
i2s_pin_config_t pin_config = this->parent_->get_pin_config();
pin_config.data_out_num = this->dout_pin_;
err = i2s_set_pin(this->parent_->get_port(), &pin_config);
#if SOC_I2S_SUPPORTS_DAC
} else {
i2s_set_dac_mode(this->internal_dac_mode_);
}
#endif
if (err != ESP_OK) {
// Failed to set the data out pin, so uninstall the driver and unlock the I2S port
ESP_LOGE(TAG, "Failed to set the data out pin");
i2s_driver_uninstall(this->parent_->get_port());
this->parent_->unlock();
}
#else
i2s_chan_config_t chan_cfg = {
.id = this->parent_->get_port(),
.role = this->i2s_role_,
.dma_desc_num = DMA_BUFFERS_COUNT,
.dma_frame_num = dma_buffer_length,
.auto_clear = true,
.intr_priority = 3,
};
/* Allocate a new TX channel and get the handle of this channel */
esp_err_t err = i2s_new_channel(&chan_cfg, &this->tx_handle_, NULL);
if (err != ESP_OK) {
ESP_LOGE(TAG, "Failed to allocate new I2S channel");
this->parent_->unlock();
return err;
}
i2s_clock_src_t clk_src = I2S_CLK_SRC_DEFAULT;
#ifdef I2S_CLK_SRC_APLL
if (this->use_apll_) {
clk_src = I2S_CLK_SRC_APLL;
}
#endif
i2s_std_gpio_config_t pin_config = this->parent_->get_pin_config();
i2s_std_clk_config_t clk_cfg = {
.sample_rate_hz = audio_stream_info.get_sample_rate(),
.clk_src = clk_src,
.mclk_multiple = this->mclk_multiple_,
};
i2s_slot_mode_t slot_mode = this->slot_mode_;
i2s_std_slot_mask_t slot_mask = this->std_slot_mask_;
if (audio_stream_info.get_channels() == 1) {
slot_mode = I2S_SLOT_MODE_MONO;
} else if (audio_stream_info.get_channels() == 2) {
slot_mode = I2S_SLOT_MODE_STEREO;
slot_mask = I2S_STD_SLOT_BOTH;
}
i2s_std_slot_config_t std_slot_cfg;
if (this->i2s_comm_fmt_ == "std") {
std_slot_cfg =
I2S_STD_PHILIPS_SLOT_DEFAULT_CONFIG((i2s_data_bit_width_t) audio_stream_info.get_bits_per_sample(), slot_mode);
} else if (this->i2s_comm_fmt_ == "pcm") {
std_slot_cfg =
I2S_STD_PCM_SLOT_DEFAULT_CONFIG((i2s_data_bit_width_t) audio_stream_info.get_bits_per_sample(), slot_mode);
} else {
std_slot_cfg =
I2S_STD_MSB_SLOT_DEFAULT_CONFIG((i2s_data_bit_width_t) audio_stream_info.get_bits_per_sample(), slot_mode);
}
#ifdef USE_ESP32_VARIANT_ESP32
// There seems to be a bug on the ESP32 (non-variant) platform where setting the slot bit width higher then the bits
// per sample causes the audio to play too fast. Setting the ws_width to the configured slot bit width seems to
// make it play at the correct speed while sending more bits per slot.
if (this->slot_bit_width_ != I2S_SLOT_BIT_WIDTH_AUTO) {
uint32_t configured_bit_width = static_cast<uint32_t>(this->slot_bit_width_);
std_slot_cfg.ws_width = configured_bit_width;
if (configured_bit_width > 16) {
std_slot_cfg.msb_right = false;
}
}
#else
std_slot_cfg.slot_bit_width = this->slot_bit_width_;
#endif
std_slot_cfg.slot_mask = slot_mask;
pin_config.dout = this->dout_pin_;
i2s_std_config_t std_cfg = {
.clk_cfg = clk_cfg,
.slot_cfg = std_slot_cfg,
.gpio_cfg = pin_config,
};
/* Initialize the channel */
err = i2s_channel_init_std_mode(this->tx_handle_, &std_cfg);
if (err != ESP_OK) {
ESP_LOGE(TAG, "Failed to initialize channel");
i2s_del_channel(this->tx_handle_);
this->tx_handle_ = nullptr;
this->parent_->unlock();
return err;
}
if (this->i2s_event_queue_ == nullptr) {
this->i2s_event_queue_ = xQueueCreate(I2S_EVENT_QUEUE_COUNT, sizeof(int64_t));
}
i2s_channel_enable(this->tx_handle_);
#endif
return err;
}
#ifndef USE_I2S_LEGACY
bool IRAM_ATTR I2SAudioSpeaker::i2s_on_sent_cb(i2s_chan_handle_t handle, i2s_event_data_t *event, void *user_ctx) {
int64_t now = esp_timer_get_time();
BaseType_t need_yield1 = pdFALSE;
BaseType_t need_yield2 = pdFALSE;
BaseType_t need_yield3 = pdFALSE;
I2SAudioSpeaker *this_speaker = (I2SAudioSpeaker *) user_ctx;
if (xQueueIsQueueFullFromISR(this_speaker->i2s_event_queue_)) {
// Queue is full, so discard the oldest event and set the warning flag to inform the user
int64_t dummy;
xQueueReceiveFromISR(this_speaker->i2s_event_queue_, &dummy, &need_yield1);
xEventGroupSetBitsFromISR(this_speaker->event_group_, SpeakerEventGroupBits::WARN_DROPPED_EVENT, &need_yield2);
}
xQueueSendToBackFromISR(this_speaker->i2s_event_queue_, &now, &need_yield3);
return need_yield1 | need_yield2 | need_yield3;
}
#endif
void I2SAudioSpeaker::stop_i2s_driver_() {
#ifdef USE_I2S_LEGACY
i2s_driver_uninstall(this->parent_->get_port());
#else
i2s_channel_disable(this->tx_handle_);
i2s_del_channel(this->tx_handle_);
this->tx_handle_ = nullptr;
#endif
this->parent_->unlock();
}
} // namespace i2s_audio
} // namespace esphome
#endif // USE_ESP32