1
0
mirror of https://github.com/esphome/esphome.git synced 2025-09-02 03:12:20 +01:00
Files
esphome/esphome/components/i2s_audio/speaker/i2s_audio_speaker.cpp

706 lines
26 KiB
C++

#include "i2s_audio_speaker.h"
#ifdef USE_ESP32
#ifdef USE_I2S_LEGACY
#include <driver/i2s.h>
#else
#include <driver/i2s_std.h>
#endif
#include "esphome/components/audio/audio.h"
#include "esphome/core/application.h"
#include "esphome/core/hal.h"
#include "esphome/core/log.h"
namespace esphome {
namespace i2s_audio {
static const uint8_t DMA_BUFFER_DURATION_MS = 15;
static const size_t DMA_BUFFERS_COUNT = 4;
static const size_t TASK_DELAY_MS = DMA_BUFFER_DURATION_MS * DMA_BUFFERS_COUNT / 2;
static const size_t TASK_STACK_SIZE = 4096;
static const ssize_t TASK_PRIORITY = 23;
static const size_t I2S_EVENT_QUEUE_COUNT = DMA_BUFFERS_COUNT + 1;
static const char *const TAG = "i2s_audio.speaker";
enum SpeakerEventGroupBits : uint32_t {
COMMAND_START = (1 << 0), // starts the speaker task
COMMAND_STOP = (1 << 1), // stops the speaker task
COMMAND_STOP_GRACEFULLY = (1 << 2), // Stops the speaker task once all data has been written
STATE_STARTING = (1 << 10),
STATE_RUNNING = (1 << 11),
STATE_STOPPING = (1 << 12),
STATE_STOPPED = (1 << 13),
ERR_TASK_FAILED_TO_START = (1 << 14),
ERR_ESP_INVALID_STATE = (1 << 15),
ERR_ESP_NOT_SUPPORTED = (1 << 16),
ERR_ESP_INVALID_ARG = (1 << 17),
ERR_ESP_INVALID_SIZE = (1 << 18),
ERR_ESP_NO_MEM = (1 << 19),
ERR_ESP_FAIL = (1 << 20),
ALL_ERR_ESP_BITS = ERR_ESP_INVALID_STATE | ERR_ESP_NOT_SUPPORTED | ERR_ESP_INVALID_ARG | ERR_ESP_INVALID_SIZE |
ERR_ESP_NO_MEM | ERR_ESP_FAIL,
ALL_BITS = 0x00FFFFFF, // All valid FreeRTOS event group bits
};
// Translates a SpeakerEventGroupBits ERR_ESP bit to the coressponding esp_err_t
static esp_err_t err_bit_to_esp_err(uint32_t bit) {
switch (bit) {
case SpeakerEventGroupBits::ERR_ESP_INVALID_STATE:
return ESP_ERR_INVALID_STATE;
case SpeakerEventGroupBits::ERR_ESP_INVALID_ARG:
return ESP_ERR_INVALID_ARG;
case SpeakerEventGroupBits::ERR_ESP_INVALID_SIZE:
return ESP_ERR_INVALID_SIZE;
case SpeakerEventGroupBits::ERR_ESP_NO_MEM:
return ESP_ERR_NO_MEM;
case SpeakerEventGroupBits::ERR_ESP_NOT_SUPPORTED:
return ESP_ERR_NOT_SUPPORTED;
default:
return ESP_FAIL;
}
}
/// @brief Multiplies the input array of Q15 numbers by a Q15 constant factor
///
/// Based on `dsps_mulc_s16_ansi` from the esp-dsp library:
/// https://github.com/espressif/esp-dsp/blob/master/modules/math/mulc/fixed/dsps_mulc_s16_ansi.c
/// (accessed on 2024-09-30).
/// @param input Array of Q15 numbers
/// @param output Array of Q15 numbers
/// @param len Length of array
/// @param c Q15 constant factor
static void q15_multiplication(const int16_t *input, int16_t *output, size_t len, int16_t c) {
for (int i = 0; i < len; i++) {
int32_t acc = (int32_t) input[i] * (int32_t) c;
output[i] = (int16_t) (acc >> 15);
}
}
// Lists the Q15 fixed point scaling factor for volume reduction.
// Has 100 values representing silence and a reduction [49, 48.5, ... 0.5, 0] dB.
// dB to PCM scaling factor formula: floating_point_scale_factor = 2^(-db/6.014)
// float to Q15 fixed point formula: q15_scale_factor = floating_point_scale_factor * 2^(15)
static const std::vector<int16_t> Q15_VOLUME_SCALING_FACTORS = {
0, 116, 122, 130, 137, 146, 154, 163, 173, 183, 194, 206, 218, 231, 244,
259, 274, 291, 308, 326, 345, 366, 388, 411, 435, 461, 488, 517, 548, 580,
615, 651, 690, 731, 774, 820, 868, 920, 974, 1032, 1094, 1158, 1227, 1300, 1377,
1459, 1545, 1637, 1734, 1837, 1946, 2061, 2184, 2313, 2450, 2596, 2750, 2913, 3085, 3269,
3462, 3668, 3885, 4116, 4360, 4619, 4893, 5183, 5490, 5816, 6161, 6527, 6914, 7324, 7758,
8218, 8706, 9222, 9770, 10349, 10963, 11613, 12302, 13032, 13805, 14624, 15491, 16410, 17384, 18415,
19508, 20665, 21891, 23189, 24565, 26022, 27566, 29201, 30933, 32767};
void I2SAudioSpeaker::setup() {
ESP_LOGCONFIG(TAG, "Setting up I2S Audio Speaker...");
this->event_group_ = xEventGroupCreate();
if (this->event_group_ == nullptr) {
ESP_LOGE(TAG, "Failed to create event group");
this->mark_failed();
return;
}
}
void I2SAudioSpeaker::loop() {
uint32_t event_group_bits = xEventGroupGetBits(this->event_group_);
if (event_group_bits & SpeakerEventGroupBits::STATE_STARTING) {
ESP_LOGD(TAG, "Starting Speaker");
this->state_ = speaker::STATE_STARTING;
xEventGroupClearBits(this->event_group_, SpeakerEventGroupBits::STATE_STARTING);
}
if (event_group_bits & SpeakerEventGroupBits::STATE_RUNNING) {
ESP_LOGD(TAG, "Started Speaker");
this->state_ = speaker::STATE_RUNNING;
xEventGroupClearBits(this->event_group_, SpeakerEventGroupBits::STATE_RUNNING);
this->status_clear_warning();
this->status_clear_error();
}
if (event_group_bits & SpeakerEventGroupBits::STATE_STOPPING) {
ESP_LOGD(TAG, "Stopping Speaker");
this->state_ = speaker::STATE_STOPPING;
xEventGroupClearBits(this->event_group_, SpeakerEventGroupBits::STATE_STOPPING);
}
if (event_group_bits & SpeakerEventGroupBits::STATE_STOPPED) {
if (!this->task_created_) {
ESP_LOGD(TAG, "Stopped Speaker");
this->state_ = speaker::STATE_STOPPED;
xEventGroupClearBits(this->event_group_, SpeakerEventGroupBits::ALL_BITS);
this->speaker_task_handle_ = nullptr;
}
}
if (event_group_bits & SpeakerEventGroupBits::ERR_TASK_FAILED_TO_START) {
this->status_set_error("Failed to start speaker task");
xEventGroupClearBits(this->event_group_, SpeakerEventGroupBits::ERR_TASK_FAILED_TO_START);
}
if (event_group_bits & SpeakerEventGroupBits::ALL_ERR_ESP_BITS) {
uint32_t error_bits = event_group_bits & SpeakerEventGroupBits::ALL_ERR_ESP_BITS;
ESP_LOGW(TAG, "Error writing to I2S: %s", esp_err_to_name(err_bit_to_esp_err(error_bits)));
this->status_set_warning();
}
if (event_group_bits & SpeakerEventGroupBits::ERR_ESP_NOT_SUPPORTED) {
this->status_set_error("Failed to adjust I2S bus to match the incoming audio");
ESP_LOGE(TAG,
"Incompatible audio format: sample rate = %" PRIu32 ", channels = %" PRIu8 ", bits per sample = %" PRIu8,
this->audio_stream_info_.get_sample_rate(), this->audio_stream_info_.get_channels(),
this->audio_stream_info_.get_bits_per_sample());
}
xEventGroupClearBits(this->event_group_, ALL_ERR_ESP_BITS);
}
void I2SAudioSpeaker::set_volume(float volume) {
this->volume_ = volume;
#ifdef USE_AUDIO_DAC
if (this->audio_dac_ != nullptr) {
if (volume > 0.0) {
this->audio_dac_->set_mute_off();
}
this->audio_dac_->set_volume(volume);
} else
#endif
{
// Fallback to software volume control by using a Q15 fixed point scaling factor
ssize_t decibel_index = remap<ssize_t, float>(volume, 0.0f, 1.0f, 0, Q15_VOLUME_SCALING_FACTORS.size() - 1);
this->q15_volume_factor_ = Q15_VOLUME_SCALING_FACTORS[decibel_index];
}
}
void I2SAudioSpeaker::set_mute_state(bool mute_state) {
this->mute_state_ = mute_state;
#ifdef USE_AUDIO_DAC
if (this->audio_dac_) {
if (mute_state) {
this->audio_dac_->set_mute_on();
} else {
this->audio_dac_->set_mute_off();
}
} else
#endif
{
if (mute_state) {
// Fallback to software volume control and scale by 0
this->q15_volume_factor_ = 0;
} else {
// Revert to previous volume when unmuting
this->set_volume(this->volume_);
}
}
}
size_t I2SAudioSpeaker::play(const uint8_t *data, size_t length, TickType_t ticks_to_wait) {
if (this->is_failed()) {
ESP_LOGE(TAG, "Cannot play audio, speaker failed to setup");
return 0;
}
if (this->state_ != speaker::STATE_RUNNING && this->state_ != speaker::STATE_STARTING) {
this->start();
}
if ((this->state_ != speaker::STATE_RUNNING) || (this->audio_ring_buffer_.use_count() != 1)) {
// Unable to write data to a running speaker, so delay the max amount of time so it can get ready
vTaskDelay(ticks_to_wait);
ticks_to_wait = 0;
}
size_t bytes_written = 0;
if ((this->state_ == speaker::STATE_RUNNING) && (this->audio_ring_buffer_.use_count() == 1)) {
// Only one owner of the ring buffer (the speaker task), so the ring buffer is allocated and no other components are
// attempting to write to it.
// Temporarily share ownership of the ring buffer so it won't be deallocated while writing
std::shared_ptr<RingBuffer> temp_ring_buffer = this->audio_ring_buffer_;
bytes_written = temp_ring_buffer->write_without_replacement((void *) data, length, ticks_to_wait);
}
return bytes_written;
}
bool I2SAudioSpeaker::has_buffered_data() const {
if (this->audio_ring_buffer_ != nullptr) {
return this->audio_ring_buffer_->available() > 0;
}
return false;
}
void I2SAudioSpeaker::speaker_task(void *params) {
I2SAudioSpeaker *this_speaker = (I2SAudioSpeaker *) params;
this_speaker->task_created_ = true;
uint32_t event_group_bits =
xEventGroupWaitBits(this_speaker->event_group_,
SpeakerEventGroupBits::COMMAND_START | SpeakerEventGroupBits::COMMAND_STOP |
SpeakerEventGroupBits::COMMAND_STOP_GRACEFULLY, // Bit message to read
pdTRUE, // Clear the bits on exit
pdFALSE, // Don't wait for all the bits,
portMAX_DELAY); // Block indefinitely until a bit is set
if (event_group_bits & (SpeakerEventGroupBits::COMMAND_STOP | SpeakerEventGroupBits::COMMAND_STOP_GRACEFULLY)) {
// Received a stop signal before the task was requested to start
this_speaker->delete_task_(0);
}
xEventGroupSetBits(this_speaker->event_group_, SpeakerEventGroupBits::STATE_STARTING);
audio::AudioStreamInfo audio_stream_info = this_speaker->audio_stream_info_;
const uint32_t dma_buffers_duration_ms = DMA_BUFFER_DURATION_MS * DMA_BUFFERS_COUNT;
// Ensure ring buffer duration is at least the duration of all DMA buffers
const uint32_t ring_buffer_duration = std::max(dma_buffers_duration_ms, this_speaker->buffer_duration_ms_);
// The DMA buffers may have more bits per sample, so calculate buffer sizes based in the input audio stream info
const size_t data_buffer_size = audio_stream_info.ms_to_bytes(dma_buffers_duration_ms);
const size_t ring_buffer_size = audio_stream_info.ms_to_bytes(ring_buffer_duration);
const size_t single_dma_buffer_input_size = data_buffer_size / DMA_BUFFERS_COUNT;
if (this_speaker->send_esp_err_to_event_group_(this_speaker->allocate_buffers_(data_buffer_size, ring_buffer_size))) {
// Failed to allocate buffers
xEventGroupSetBits(this_speaker->event_group_, SpeakerEventGroupBits::ERR_ESP_NO_MEM);
this_speaker->delete_task_(data_buffer_size);
}
if (!this_speaker->send_esp_err_to_event_group_(this_speaker->start_i2s_driver_(audio_stream_info))) {
xEventGroupSetBits(this_speaker->event_group_, SpeakerEventGroupBits::STATE_RUNNING);
bool stop_gracefully = false;
uint32_t last_data_received_time = millis();
bool tx_dma_underflow = false;
this_speaker->accumulated_frames_written_ = 0;
// Keep looping if paused, there is no timeout configured, or data was received more recently than the configured
// timeout
while (this_speaker->pause_state_ || !this_speaker->timeout_.has_value() ||
(millis() - last_data_received_time) <= this_speaker->timeout_.value()) {
event_group_bits = xEventGroupGetBits(this_speaker->event_group_);
if (event_group_bits & SpeakerEventGroupBits::COMMAND_STOP) {
xEventGroupClearBits(this_speaker->event_group_, SpeakerEventGroupBits::COMMAND_STOP);
break;
}
if (event_group_bits & SpeakerEventGroupBits::COMMAND_STOP_GRACEFULLY) {
xEventGroupClearBits(this_speaker->event_group_, SpeakerEventGroupBits::COMMAND_STOP_GRACEFULLY);
stop_gracefully = true;
}
if (this_speaker->audio_stream_info_ != audio_stream_info) {
// Audio stream info changed, stop the speaker task so it will restart with the proper settings.
break;
}
#ifdef USE_I2S_LEGACY
i2s_event_t i2s_event;
while (xQueueReceive(this_speaker->i2s_event_queue_, &i2s_event, 0)) {
if (i2s_event.type == I2S_EVENT_TX_Q_OVF) {
tx_dma_underflow = true;
}
}
#else
bool overflow;
while (xQueueReceive(this_speaker->i2s_event_queue_, &overflow, 0)) {
if (overflow) {
tx_dma_underflow = true;
}
}
#endif
if (this_speaker->pause_state_) {
// Pause state is accessed atomically, so thread safe
// Delay so the task can yields, then skip transferring audio data
delay(TASK_DELAY_MS);
continue;
}
size_t bytes_read = this_speaker->audio_ring_buffer_->read((void *) this_speaker->data_buffer_, data_buffer_size,
pdMS_TO_TICKS(TASK_DELAY_MS));
if (bytes_read > 0) {
if ((audio_stream_info.get_bits_per_sample() == 16) && (this_speaker->q15_volume_factor_ < INT16_MAX)) {
// Scale samples by the volume factor in place
q15_multiplication((int16_t *) this_speaker->data_buffer_, (int16_t *) this_speaker->data_buffer_,
bytes_read / sizeof(int16_t), this_speaker->q15_volume_factor_);
}
#ifdef USE_ESP32_VARIANT_ESP32
// For ESP32 8/16 bit mono mode samples need to be switched.
if (audio_stream_info.get_channels() == 1 && audio_stream_info.get_bits_per_sample() <= 16) {
size_t len = bytes_read / sizeof(int16_t);
int16_t *tmp_buf = (int16_t *) this_speaker->data_buffer_;
for (int i = 0; i < len; i += 2) {
int16_t tmp = tmp_buf[i];
tmp_buf[i] = tmp_buf[i + 1];
tmp_buf[i + 1] = tmp;
}
}
#endif
// Write the audio data to a single DMA buffer at a time to reduce latency for the audio duration played
// callback.
const uint32_t batches = (bytes_read + single_dma_buffer_input_size - 1) / single_dma_buffer_input_size;
for (uint32_t i = 0; i < batches; ++i) {
size_t bytes_written = 0;
size_t bytes_to_write = std::min(single_dma_buffer_input_size, bytes_read);
#ifdef USE_I2S_LEGACY
if (audio_stream_info.get_bits_per_sample() == (uint8_t) this_speaker->bits_per_sample_) {
i2s_write(this_speaker->parent_->get_port(), this_speaker->data_buffer_ + i * single_dma_buffer_input_size,
bytes_to_write, &bytes_written, pdMS_TO_TICKS(DMA_BUFFER_DURATION_MS * 5));
} else if (audio_stream_info.get_bits_per_sample() < (uint8_t) this_speaker->bits_per_sample_) {
i2s_write_expand(this_speaker->parent_->get_port(),
this_speaker->data_buffer_ + i * single_dma_buffer_input_size, bytes_to_write,
audio_stream_info.get_bits_per_sample(), this_speaker->bits_per_sample_, &bytes_written,
pdMS_TO_TICKS(DMA_BUFFER_DURATION_MS * 5));
}
#else
i2s_channel_write(this_speaker->tx_handle_, this_speaker->data_buffer_ + i * single_dma_buffer_input_size,
bytes_to_write, &bytes_written, pdMS_TO_TICKS(DMA_BUFFER_DURATION_MS * 5));
#endif
uint32_t write_timestamp = micros();
if (bytes_written != bytes_to_write) {
xEventGroupSetBits(this_speaker->event_group_, SpeakerEventGroupBits::ERR_ESP_INVALID_SIZE);
}
bytes_read -= bytes_written;
this_speaker->accumulated_frames_written_ += audio_stream_info.bytes_to_frames(bytes_written);
const uint32_t new_playback_ms =
audio_stream_info.frames_to_milliseconds_with_remainder(&this_speaker->accumulated_frames_written_);
const uint32_t remainder_us =
audio_stream_info.frames_to_microseconds(this_speaker->accumulated_frames_written_);
uint32_t pending_frames =
audio_stream_info.bytes_to_frames(bytes_read + this_speaker->audio_ring_buffer_->available());
const uint32_t pending_ms = audio_stream_info.frames_to_milliseconds_with_remainder(&pending_frames);
this_speaker->audio_output_callback_(new_playback_ms, remainder_us, pending_ms, write_timestamp);
tx_dma_underflow = false;
last_data_received_time = millis();
}
} else {
// No data received
if (stop_gracefully && tx_dma_underflow) {
break;
}
}
}
xEventGroupSetBits(this_speaker->event_group_, SpeakerEventGroupBits::STATE_STOPPING);
#ifdef USE_I2S_LEGACY
i2s_driver_uninstall(this_speaker->parent_->get_port());
#else
i2s_channel_disable(this_speaker->tx_handle_);
i2s_del_channel(this_speaker->tx_handle_);
#endif
this_speaker->parent_->unlock();
}
this_speaker->delete_task_(data_buffer_size);
}
void I2SAudioSpeaker::start() {
if (!this->is_ready() || this->is_failed() || this->status_has_error())
return;
if ((this->state_ == speaker::STATE_STARTING) || (this->state_ == speaker::STATE_RUNNING))
return;
if (!this->task_created_ && (this->speaker_task_handle_ == nullptr)) {
xTaskCreate(I2SAudioSpeaker::speaker_task, "speaker_task", TASK_STACK_SIZE, (void *) this, TASK_PRIORITY,
&this->speaker_task_handle_);
if (this->speaker_task_handle_ != nullptr) {
xEventGroupSetBits(this->event_group_, SpeakerEventGroupBits::COMMAND_START);
} else {
xEventGroupSetBits(this->event_group_, SpeakerEventGroupBits::ERR_TASK_FAILED_TO_START);
}
}
}
void I2SAudioSpeaker::stop() { this->stop_(false); }
void I2SAudioSpeaker::finish() { this->stop_(true); }
void I2SAudioSpeaker::stop_(bool wait_on_empty) {
if (this->is_failed())
return;
if (this->state_ == speaker::STATE_STOPPED)
return;
if (wait_on_empty) {
xEventGroupSetBits(this->event_group_, SpeakerEventGroupBits::COMMAND_STOP_GRACEFULLY);
} else {
xEventGroupSetBits(this->event_group_, SpeakerEventGroupBits::COMMAND_STOP);
}
}
bool I2SAudioSpeaker::send_esp_err_to_event_group_(esp_err_t err) {
switch (err) {
case ESP_OK:
return false;
case ESP_ERR_INVALID_STATE:
xEventGroupSetBits(this->event_group_, SpeakerEventGroupBits::ERR_ESP_INVALID_STATE);
return true;
case ESP_ERR_INVALID_ARG:
xEventGroupSetBits(this->event_group_, SpeakerEventGroupBits::ERR_ESP_INVALID_ARG);
return true;
case ESP_ERR_INVALID_SIZE:
xEventGroupSetBits(this->event_group_, SpeakerEventGroupBits::ERR_ESP_INVALID_SIZE);
return true;
case ESP_ERR_NO_MEM:
xEventGroupSetBits(this->event_group_, SpeakerEventGroupBits::ERR_ESP_NO_MEM);
return true;
case ESP_ERR_NOT_SUPPORTED:
xEventGroupSetBits(this->event_group_, SpeakerEventGroupBits::ERR_ESP_NOT_SUPPORTED);
return true;
default:
xEventGroupSetBits(this->event_group_, SpeakerEventGroupBits::ERR_ESP_FAIL);
return true;
}
}
esp_err_t I2SAudioSpeaker::allocate_buffers_(size_t data_buffer_size, size_t ring_buffer_size) {
if (this->data_buffer_ == nullptr) {
// Allocate data buffer for temporarily storing audio from the ring buffer before writing to the I2S bus
ExternalRAMAllocator<uint8_t> allocator(ExternalRAMAllocator<uint8_t>::ALLOW_FAILURE);
this->data_buffer_ = allocator.allocate(data_buffer_size);
}
if (this->data_buffer_ == nullptr) {
return ESP_ERR_NO_MEM;
}
if (this->audio_ring_buffer_.use_count() == 0) {
// Allocate ring buffer. Uses a shared_ptr to ensure it isn't improperly deallocated.
this->audio_ring_buffer_ = RingBuffer::create(ring_buffer_size);
}
if (this->audio_ring_buffer_ == nullptr) {
return ESP_ERR_NO_MEM;
}
return ESP_OK;
}
esp_err_t I2SAudioSpeaker::start_i2s_driver_(audio::AudioStreamInfo &audio_stream_info) {
#ifdef USE_I2S_LEGACY
if ((this->i2s_mode_ & I2S_MODE_SLAVE) && (this->sample_rate_ != audio_stream_info.get_sample_rate())) { // NOLINT
#else
if ((this->i2s_role_ & I2S_ROLE_SLAVE) && (this->sample_rate_ != audio_stream_info.get_sample_rate())) { // NOLINT
#endif
// Can't reconfigure I2S bus, so the sample rate must match the configured value
return ESP_ERR_NOT_SUPPORTED;
}
#ifdef USE_I2S_LEGACY
if ((i2s_bits_per_sample_t) audio_stream_info.get_bits_per_sample() > this->bits_per_sample_) {
#else
if (this->slot_bit_width_ != I2S_SLOT_BIT_WIDTH_AUTO &&
(i2s_slot_bit_width_t) audio_stream_info.get_bits_per_sample() > this->slot_bit_width_) {
#endif
// Currently can't handle the case when the incoming audio has more bits per sample than the configured value
return ESP_ERR_NOT_SUPPORTED;
}
if (!this->parent_->try_lock()) {
return ESP_ERR_INVALID_STATE;
}
uint32_t dma_buffer_length = audio_stream_info.ms_to_frames(DMA_BUFFER_DURATION_MS);
#ifdef USE_I2S_LEGACY
i2s_channel_fmt_t channel = this->channel_;
if (audio_stream_info.get_channels() == 1) {
if (this->channel_ == I2S_CHANNEL_FMT_ONLY_LEFT) {
channel = I2S_CHANNEL_FMT_ONLY_LEFT;
} else {
channel = I2S_CHANNEL_FMT_ONLY_RIGHT;
}
} else if (audio_stream_info.get_channels() == 2) {
channel = I2S_CHANNEL_FMT_RIGHT_LEFT;
}
i2s_driver_config_t config = {
.mode = (i2s_mode_t) (this->i2s_mode_ | I2S_MODE_TX),
.sample_rate = audio_stream_info.get_sample_rate(),
.bits_per_sample = this->bits_per_sample_,
.channel_format = channel,
.communication_format = this->i2s_comm_fmt_,
.intr_alloc_flags = ESP_INTR_FLAG_LEVEL1,
.dma_buf_count = DMA_BUFFERS_COUNT,
.dma_buf_len = (int) dma_buffer_length,
.use_apll = this->use_apll_,
.tx_desc_auto_clear = true,
.fixed_mclk = I2S_PIN_NO_CHANGE,
.mclk_multiple = I2S_MCLK_MULTIPLE_256,
.bits_per_chan = this->bits_per_channel_,
#if SOC_I2S_SUPPORTS_TDM
.chan_mask = (i2s_channel_t) (I2S_TDM_ACTIVE_CH0 | I2S_TDM_ACTIVE_CH1),
.total_chan = 2,
.left_align = false,
.big_edin = false,
.bit_order_msb = false,
.skip_msk = false,
#endif
};
#if SOC_I2S_SUPPORTS_DAC
if (this->internal_dac_mode_ != I2S_DAC_CHANNEL_DISABLE) {
config.mode = (i2s_mode_t) (config.mode | I2S_MODE_DAC_BUILT_IN);
}
#endif
esp_err_t err =
i2s_driver_install(this->parent_->get_port(), &config, I2S_EVENT_QUEUE_COUNT, &this->i2s_event_queue_);
if (err != ESP_OK) {
// Failed to install the driver, so unlock the I2S port
this->parent_->unlock();
return err;
}
#if SOC_I2S_SUPPORTS_DAC
if (this->internal_dac_mode_ == I2S_DAC_CHANNEL_DISABLE) {
#endif
i2s_pin_config_t pin_config = this->parent_->get_pin_config();
pin_config.data_out_num = this->dout_pin_;
err = i2s_set_pin(this->parent_->get_port(), &pin_config);
#if SOC_I2S_SUPPORTS_DAC
} else {
i2s_set_dac_mode(this->internal_dac_mode_);
}
#endif
if (err != ESP_OK) {
// Failed to set the data out pin, so uninstall the driver and unlock the I2S port
i2s_driver_uninstall(this->parent_->get_port());
this->parent_->unlock();
}
#else
i2s_chan_config_t chan_cfg = {
.id = this->parent_->get_port(),
.role = this->i2s_role_,
.dma_desc_num = DMA_BUFFERS_COUNT,
.dma_frame_num = dma_buffer_length,
.auto_clear = true,
};
/* Allocate a new TX channel and get the handle of this channel */
esp_err_t err = i2s_new_channel(&chan_cfg, &this->tx_handle_, NULL);
if (err != ESP_OK) {
this->parent_->unlock();
return err;
}
i2s_clock_src_t clk_src = I2S_CLK_SRC_DEFAULT;
#ifdef I2S_CLK_SRC_APLL
if (this->use_apll_) {
clk_src = I2S_CLK_SRC_APLL;
}
#endif
i2s_std_gpio_config_t pin_config = this->parent_->get_pin_config();
i2s_std_clk_config_t clk_cfg = {
.sample_rate_hz = audio_stream_info.get_sample_rate(),
.clk_src = clk_src,
.mclk_multiple = I2S_MCLK_MULTIPLE_256,
};
i2s_slot_mode_t slot_mode = this->slot_mode_;
i2s_std_slot_mask_t slot_mask = this->std_slot_mask_;
if (audio_stream_info.get_channels() == 1) {
slot_mode = I2S_SLOT_MODE_MONO;
} else if (audio_stream_info.get_channels() == 2) {
slot_mode = I2S_SLOT_MODE_STEREO;
slot_mask = I2S_STD_SLOT_BOTH;
}
i2s_std_slot_config_t std_slot_cfg;
if (this->i2s_comm_fmt_ == "std") {
std_slot_cfg =
I2S_STD_PHILIPS_SLOT_DEFAULT_CONFIG((i2s_data_bit_width_t) audio_stream_info.get_bits_per_sample(), slot_mode);
} else if (this->i2s_comm_fmt_ == "pcm") {
std_slot_cfg =
I2S_STD_PCM_SLOT_DEFAULT_CONFIG((i2s_data_bit_width_t) audio_stream_info.get_bits_per_sample(), slot_mode);
} else {
std_slot_cfg =
I2S_STD_MSB_SLOT_DEFAULT_CONFIG((i2s_data_bit_width_t) audio_stream_info.get_bits_per_sample(), slot_mode);
}
std_slot_cfg.slot_bit_width = this->slot_bit_width_;
std_slot_cfg.slot_mask = slot_mask;
pin_config.dout = this->dout_pin_;
i2s_std_config_t std_cfg = {
.clk_cfg = clk_cfg,
.slot_cfg = std_slot_cfg,
.gpio_cfg = pin_config,
};
/* Initialize the channel */
err = i2s_channel_init_std_mode(this->tx_handle_, &std_cfg);
if (err != ESP_OK) {
i2s_del_channel(this->tx_handle_);
this->parent_->unlock();
return err;
}
if (this->i2s_event_queue_ == nullptr) {
this->i2s_event_queue_ = xQueueCreate(1, sizeof(bool));
}
const i2s_event_callbacks_t callbacks = {
.on_send_q_ovf = i2s_overflow_cb,
};
i2s_channel_register_event_callback(this->tx_handle_, &callbacks, this);
/* Before reading data, start the TX channel first */
i2s_channel_enable(this->tx_handle_);
if (err != ESP_OK) {
i2s_del_channel(this->tx_handle_);
this->parent_->unlock();
}
#endif
return err;
}
void I2SAudioSpeaker::delete_task_(size_t buffer_size) {
this->audio_ring_buffer_.reset(); // Releases ownership of the shared_ptr
if (this->data_buffer_ != nullptr) {
ExternalRAMAllocator<uint8_t> allocator(ExternalRAMAllocator<uint8_t>::ALLOW_FAILURE);
allocator.deallocate(this->data_buffer_, buffer_size);
this->data_buffer_ = nullptr;
}
xEventGroupSetBits(this->event_group_, SpeakerEventGroupBits::STATE_STOPPED);
this->task_created_ = false;
vTaskDelete(nullptr);
}
#ifndef USE_I2S_LEGACY
bool IRAM_ATTR I2SAudioSpeaker::i2s_overflow_cb(i2s_chan_handle_t handle, i2s_event_data_t *event, void *user_ctx) {
I2SAudioSpeaker *this_speaker = (I2SAudioSpeaker *) user_ctx;
bool overflow = true;
xQueueOverwrite(this_speaker->i2s_event_queue_, &overflow);
return false;
}
#endif
} // namespace i2s_audio
} // namespace esphome
#endif // USE_ESP32