mirror of
https://github.com/esphome/esphome.git
synced 2025-04-15 15:20:27 +01:00
153 lines
5.8 KiB
C++
153 lines
5.8 KiB
C++
#pragma once
|
|
|
|
#include "esphome/core/component.h"
|
|
#include "esphome/core/datatypes.h"
|
|
#include "esphome/components/uart/uart.h"
|
|
#include "esphome/components/sensor/sensor.h"
|
|
|
|
namespace esphome {
|
|
namespace bl0942 {
|
|
|
|
// The BL0942 IC is "calibration-free", which means that it doesn't care
|
|
// at all about calibration, and that's left to software. It measures a
|
|
// voltage differential on its IP/IN pins which linearly proportional to
|
|
// the current flow, and another on its VP pin which is proportional to
|
|
// the line voltage. It never knows the actual calibration; the values
|
|
// it reports are solely in terms of those inputs.
|
|
//
|
|
// The datasheet refers to the input voltages as I(A) and V(V), both
|
|
// in millivolts. It measures them against a reference voltage Vref,
|
|
// which is typically 1.218V (but that absolute value is meaningless
|
|
// without the actual calibration anyway).
|
|
//
|
|
// The reported I_RMS value is 305978 I(A)/Vref, and the reported V_RMS
|
|
// value is 73989 V(V)/Vref. So we can calibrate those by applying a
|
|
// simple meter with a resistive load.
|
|
//
|
|
// The chip also measures the phase difference between voltage and
|
|
// current, and uses it to calculate the power factor (cos φ). It
|
|
// reports the WATT value of 3537 * I_RMS * V_RMS * cos φ).
|
|
//
|
|
// It also integrates total energy based on the WATT value. The time for
|
|
// one CF_CNT pulse is 1638.4*256 / WATT.
|
|
//
|
|
// So... how do we calibrate that?
|
|
//
|
|
// Using a simple resistive load and an external meter, we can measure
|
|
// the true voltage and current for a given V_RMS and I_RMS reading,
|
|
// to calculate BL0942_UREF and BL0942_IREF. Those are in units of
|
|
// "305978 counts per amp" or "73989 counts per volt" respectively.
|
|
//
|
|
// We can derive BL0942_PREF from those. Let's eliminate the weird
|
|
// factors and express the calibration in plain counts per volt/amp:
|
|
// UREF1 = UREF/73989, IREF1 = IREF/305978.
|
|
//
|
|
// Next... the true power in Watts is V * I * cos φ, so that's equal
|
|
// to WATT/3537 * IREF1 * UREF1. Which means
|
|
// BL0942_PREF = BL0942_UREF * BL0942_IREF * 3537 / 305978 / 73989.
|
|
//
|
|
// Finally the accumulated energy. The period of a CF_CNT count is
|
|
// 1638.4*256 / WATT seconds, or 419230.4 / WATT seconds. Which means
|
|
// the energy represented by a CN_CNT pulse is 419230.4 WATT-seconds.
|
|
// Factoring in the calibration, that's 419230.4 / BL0942_PREF actual
|
|
// Watt-seconds (or Joules, as the physicists like to call them).
|
|
//
|
|
// But we're not being physicists today; we we're being engineers, so
|
|
// we want to convert to kWh instead. Which we do by dividing by 1000
|
|
// and then by 3600, so the energy in kWh is
|
|
// CF_CNT * 419230.4 / BL0942_PREF / 3600000
|
|
//
|
|
// Which makes BL0952_EREF = BL0942_PREF * 3600000 / 419430.4
|
|
|
|
static const float BL0942_PREF = 596; // taken from tasmota
|
|
static const float BL0942_UREF = 15873.35944299; // should be 73989/1.218
|
|
static const float BL0942_IREF = 251213.46469622; // 305978/1.218
|
|
static const float BL0942_EREF = 3304.61127328; // Measured
|
|
|
|
struct DataPacket {
|
|
uint8_t frame_header;
|
|
uint24_le_t i_rms;
|
|
uint24_le_t v_rms;
|
|
uint24_le_t i_fast_rms;
|
|
int24_le_t watt;
|
|
uint24_le_t cf_cnt;
|
|
uint16_le_t frequency;
|
|
uint8_t reserved1;
|
|
uint8_t status;
|
|
uint8_t reserved2;
|
|
uint8_t reserved3;
|
|
uint8_t checksum;
|
|
} __attribute__((packed));
|
|
|
|
enum LineFrequency : uint8_t {
|
|
LINE_FREQUENCY_50HZ = 50,
|
|
LINE_FREQUENCY_60HZ = 60,
|
|
};
|
|
|
|
class BL0942 : public PollingComponent, public uart::UARTDevice {
|
|
public:
|
|
void set_voltage_sensor(sensor::Sensor *voltage_sensor) { voltage_sensor_ = voltage_sensor; }
|
|
void set_current_sensor(sensor::Sensor *current_sensor) { current_sensor_ = current_sensor; }
|
|
void set_power_sensor(sensor::Sensor *power_sensor) { power_sensor_ = power_sensor; }
|
|
void set_energy_sensor(sensor::Sensor *energy_sensor) { energy_sensor_ = energy_sensor; }
|
|
void set_frequency_sensor(sensor::Sensor *frequency_sensor) { frequency_sensor_ = frequency_sensor; }
|
|
void set_line_freq(LineFrequency freq) { this->line_freq_ = freq; }
|
|
void set_address(uint8_t address) { this->address_ = address; }
|
|
void set_reset(bool reset) { this->reset_ = reset; }
|
|
void set_current_reference(float current_ref) {
|
|
this->current_reference_ = current_ref;
|
|
this->current_reference_set_ = true;
|
|
}
|
|
void set_energy_reference(float energy_ref) {
|
|
this->energy_reference_ = energy_ref;
|
|
this->energy_reference_set_ = true;
|
|
}
|
|
void set_power_reference(float power_ref) {
|
|
this->power_reference_ = power_ref;
|
|
this->power_reference_set_ = true;
|
|
}
|
|
void set_voltage_reference(float voltage_ref) {
|
|
this->voltage_reference_ = voltage_ref;
|
|
this->voltage_reference_set_ = true;
|
|
}
|
|
|
|
void loop() override;
|
|
void update() override;
|
|
void setup() override;
|
|
void dump_config() override;
|
|
|
|
protected:
|
|
sensor::Sensor *voltage_sensor_{nullptr};
|
|
sensor::Sensor *current_sensor_{nullptr};
|
|
// NB This may be negative as the circuits is seemingly able to measure
|
|
// power in both directions
|
|
sensor::Sensor *power_sensor_{nullptr};
|
|
sensor::Sensor *energy_sensor_{nullptr};
|
|
sensor::Sensor *frequency_sensor_{nullptr};
|
|
|
|
// Divide by this to turn into Watt
|
|
float power_reference_ = BL0942_PREF;
|
|
bool power_reference_set_ = false;
|
|
// Divide by this to turn into Volt
|
|
float voltage_reference_ = BL0942_UREF;
|
|
bool voltage_reference_set_ = false;
|
|
// Divide by this to turn into Ampere
|
|
float current_reference_ = BL0942_IREF;
|
|
bool current_reference_set_ = false;
|
|
// Divide by this to turn into kWh
|
|
float energy_reference_ = BL0942_EREF;
|
|
bool energy_reference_set_ = false;
|
|
uint8_t address_ = 0;
|
|
bool reset_ = false;
|
|
LineFrequency line_freq_ = LINE_FREQUENCY_50HZ;
|
|
uint32_t rx_start_ = 0;
|
|
uint32_t prev_cf_cnt_ = 0;
|
|
|
|
bool validate_checksum_(DataPacket *data);
|
|
int read_reg_(uint8_t reg);
|
|
void write_reg_(uint8_t reg, uint32_t val);
|
|
void received_package_(DataPacket *data);
|
|
};
|
|
} // namespace bl0942
|
|
} // namespace esphome
|