1
0
mirror of https://github.com/esphome/esphome.git synced 2026-02-08 00:31:58 +00:00
Files
esphome/esphome/analyze_memory/__init__.py

898 lines
35 KiB
Python

"""Memory usage analyzer for ESPHome compiled binaries."""
from collections import defaultdict
from dataclasses import dataclass, field
import logging
from pathlib import Path
import re
import subprocess
from typing import TYPE_CHECKING
from .const import (
CORE_SUBCATEGORY_PATTERNS,
DEMANGLED_PATTERNS,
ESPHOME_COMPONENT_PATTERN,
SYMBOL_PATTERNS,
)
from .demangle import batch_demangle
from .helpers import (
get_component_class_patterns,
get_esphome_components,
map_section_name,
parse_symbol_line,
)
from .toolchain import find_tool, resolve_tool_path, run_tool
if TYPE_CHECKING:
from esphome.platformio_api import IDEData
_LOGGER = logging.getLogger(__name__)
# C++ runtime patterns for categorization
_CPP_RUNTIME_PATTERNS = frozenset(["vtable", "typeinfo", "thunk"])
# libc printf/scanf family base names (used to detect variants like _printf_r, vfprintf, etc.)
_LIBC_PRINTF_SCANF_FAMILY = frozenset(["printf", "fprintf", "sprintf", "scanf"])
# Regex pattern for parsing readelf section headers
# Format: [ #] name type addr off size
_READELF_SECTION_PATTERN = re.compile(
r"\s*\[\s*\d+\]\s+([\.\w]+)\s+\w+\s+[\da-fA-F]+\s+[\da-fA-F]+\s+([\da-fA-F]+)"
)
# Component category prefixes
_COMPONENT_PREFIX_ESPHOME = "[esphome]"
_COMPONENT_PREFIX_EXTERNAL = "[external]"
_COMPONENT_CORE = f"{_COMPONENT_PREFIX_ESPHOME}core"
_COMPONENT_API = f"{_COMPONENT_PREFIX_ESPHOME}api"
# C++ namespace prefixes
_NAMESPACE_ESPHOME = "esphome::"
_NAMESPACE_STD = "std::"
# Type alias for symbol information: (symbol_name, size, component)
SymbolInfoType = tuple[str, int, str]
# RAM sections - symbols in these sections consume RAM
RAM_SECTIONS = frozenset([".data", ".bss"])
@dataclass
class MemorySection:
"""Represents a memory section with its symbols."""
name: str
symbols: list[SymbolInfoType] = field(default_factory=list)
total_size: int = 0 # Actual section size from ELF headers
symbol_size: int = 0 # Sum of symbol sizes (may be less than total_size)
@dataclass
class SDKSymbol:
"""Represents a symbol from an SDK library that's not in the ELF symbol table."""
name: str
size: int
library: str # Name of the .a file (e.g., "libpp.a")
section: str # ".bss" or ".data"
is_local: bool # True if static/local symbol (lowercase in nm output)
demangled: str = "" # Demangled name (populated after analysis)
@dataclass
class ComponentMemory:
"""Tracks memory usage for a component."""
name: str
text_size: int = 0 # Code in flash
rodata_size: int = 0 # Read-only data in flash
data_size: int = 0 # Initialized data (flash + ram)
bss_size: int = 0 # Uninitialized data (ram only)
symbol_count: int = 0
def add_section_size(self, section_name: str, size: int) -> None:
"""Add size to the appropriate attribute for a section."""
if section_name == ".text":
self.text_size += size
elif section_name == ".rodata":
self.rodata_size += size
elif section_name == ".data":
self.data_size += size
elif section_name == ".bss":
self.bss_size += size
@property
def flash_total(self) -> int:
"""Total flash usage (text + rodata + data)."""
return self.text_size + self.rodata_size + self.data_size
@property
def ram_total(self) -> int:
"""Total RAM usage (data + bss)."""
return self.data_size + self.bss_size
class MemoryAnalyzer:
"""Analyzes memory usage from ELF files."""
def __init__(
self,
elf_path: str,
objdump_path: str | None = None,
readelf_path: str | None = None,
external_components: set[str] | None = None,
idedata: "IDEData | None" = None,
) -> None:
"""Initialize memory analyzer.
Args:
elf_path: Path to ELF file to analyze
objdump_path: Path to objdump binary (auto-detected from idedata if not provided)
readelf_path: Path to readelf binary (auto-detected from idedata if not provided)
external_components: Set of external component names
idedata: Optional PlatformIO IDEData object to auto-detect toolchain paths
"""
self.elf_path = Path(elf_path)
if not self.elf_path.exists():
raise FileNotFoundError(f"ELF file not found: {elf_path}")
# Auto-detect toolchain paths from idedata if not provided
if idedata is not None and (objdump_path is None or readelf_path is None):
objdump_path = objdump_path or idedata.objdump_path
readelf_path = readelf_path or idedata.readelf_path
_LOGGER.debug("Using toolchain paths from PlatformIO idedata")
# Validate paths exist, fall back to find_tool if they don't
# This handles cases like Zephyr where cc_path doesn't include full path
# and the toolchain prefix may differ (e.g., arm-zephyr-eabi- vs arm-none-eabi-)
objdump_path = resolve_tool_path("objdump", objdump_path, objdump_path)
readelf_path = resolve_tool_path("readelf", readelf_path, objdump_path)
self.objdump_path = objdump_path or "objdump"
self.readelf_path = readelf_path or "readelf"
self.external_components = external_components or set()
self._idedata = idedata
# Derive nm path from objdump path using shared toolchain utility
self.nm_path = find_tool("nm", self.objdump_path)
self.sections: dict[str, MemorySection] = {}
self.components: dict[str, ComponentMemory] = defaultdict(
lambda: ComponentMemory("")
)
self._demangle_cache: dict[str, str] = {}
self._uncategorized_symbols: list[tuple[str, str, int]] = []
self._esphome_core_symbols: list[
tuple[str, str, int]
] = [] # Track core symbols
# Track symbols for all components: (symbol_name, demangled, size, section)
self._component_symbols: dict[str, list[tuple[str, str, int, str]]] = (
defaultdict(list)
)
# Track RAM symbols separately for detailed analysis: (symbol_name, demangled, size, section)
self._ram_symbols: dict[str, list[tuple[str, str, int, str]]] = defaultdict(
list
)
# Track ELF symbol names for SDK cross-reference
self._elf_symbol_names: set[str] = set()
# SDK symbols not in ELF (static/local symbols from closed-source libs)
self._sdk_symbols: list[SDKSymbol] = []
# CSWTCH symbols: list of (name, size, source_file, component)
self._cswtch_symbols: list[tuple[str, int, str, str]] = []
def analyze(self) -> dict[str, ComponentMemory]:
"""Analyze the ELF file and return component memory usage."""
self._parse_sections()
self._parse_symbols()
self._categorize_symbols()
self._analyze_cswtch_symbols()
self._analyze_sdk_libraries()
return dict(self.components)
def _parse_sections(self) -> None:
"""Parse section headers from ELF file."""
result = subprocess.run(
[self.readelf_path, "-S", str(self.elf_path)],
capture_output=True,
text=True,
check=True,
)
# Parse section headers
for line in result.stdout.splitlines():
# Look for section entries
if not (match := _READELF_SECTION_PATTERN.match(line)):
continue
section_name = match.group(1)
size_hex = match.group(2)
size = int(size_hex, 16)
# Map to standard section name
mapped_section = map_section_name(section_name)
if not mapped_section:
continue
if mapped_section not in self.sections:
self.sections[mapped_section] = MemorySection(mapped_section)
self.sections[mapped_section].total_size += size
def _parse_symbols(self) -> None:
"""Parse symbols from ELF file."""
result = subprocess.run(
[self.objdump_path, "-t", str(self.elf_path)],
capture_output=True,
text=True,
check=True,
)
# Track seen addresses to avoid duplicates
seen_addresses: set[str] = set()
for line in result.stdout.splitlines():
if not (symbol_info := parse_symbol_line(line)):
continue
section, name, size, address = symbol_info
# Skip duplicate symbols at the same address (e.g., C1/C2 constructors)
if address in seen_addresses or section not in self.sections:
continue
self.sections[section].symbols.append((name, size, ""))
self.sections[section].symbol_size += size
self._elf_symbol_names.add(name)
seen_addresses.add(address)
def _categorize_symbols(self) -> None:
"""Categorize symbols by component."""
# First, collect all unique symbol names for batch demangling
all_symbols = {
symbol_name
for section in self.sections.values()
for symbol_name, _, _ in section.symbols
}
# Batch demangle all symbols at once
self._batch_demangle_symbols(list(all_symbols))
# Now categorize with cached demangled names
for section_name, section in self.sections.items():
for symbol_name, size, _ in section.symbols:
component = self._identify_component(symbol_name)
if component not in self.components:
self.components[component] = ComponentMemory(component)
comp_mem = self.components[component]
comp_mem.symbol_count += 1
# Update the appropriate size attribute based on section
comp_mem.add_section_size(section_name, size)
# Track uncategorized symbols
if component == "other" and size > 0:
demangled = self._demangle_symbol(symbol_name)
self._uncategorized_symbols.append((symbol_name, demangled, size))
# Track ESPHome core symbols for detailed analysis
if component == _COMPONENT_CORE and size > 0:
demangled = self._demangle_symbol(symbol_name)
self._esphome_core_symbols.append((symbol_name, demangled, size))
# Track all component symbols for detailed analysis
if size > 0:
demangled = self._demangle_symbol(symbol_name)
self._component_symbols[component].append(
(symbol_name, demangled, size, section_name)
)
# Track RAM symbols separately for detailed RAM analysis
if section_name in RAM_SECTIONS:
self._ram_symbols[component].append(
(symbol_name, demangled, size, section_name)
)
def _identify_component(self, symbol_name: str) -> str:
"""Identify which component a symbol belongs to."""
# Demangle C++ names if needed
demangled = self._demangle_symbol(symbol_name)
# Check for special component classes first (before namespace pattern)
# This handles cases like esphome::ESPHomeOTAComponent which should map to ota
if _NAMESPACE_ESPHOME in demangled:
# Check for special component classes that include component name in the class
# For example: esphome::ESPHomeOTAComponent -> ota component
for component_name in get_esphome_components():
patterns = get_component_class_patterns(component_name)
if any(pattern in demangled for pattern in patterns):
return f"{_COMPONENT_PREFIX_ESPHOME}{component_name}"
# Check for ESPHome component namespaces
match = ESPHOME_COMPONENT_PATTERN.search(demangled)
if match:
component_name = match.group(1)
# Strip trailing underscore if present (e.g., switch_ -> switch)
component_name = component_name.rstrip("_")
# Check if this is an actual component in the components directory
if component_name in get_esphome_components():
return f"{_COMPONENT_PREFIX_ESPHOME}{component_name}"
# Check if this is a known external component from the config
if component_name in self.external_components:
return f"{_COMPONENT_PREFIX_EXTERNAL}{component_name}"
# Everything else in esphome:: namespace is core
return _COMPONENT_CORE
# Check for esphome core namespace (no component namespace)
if _NAMESPACE_ESPHOME in demangled:
# If no component match found, it's core
return _COMPONENT_CORE
# Check against symbol patterns
for component, patterns in SYMBOL_PATTERNS.items():
if any(pattern in symbol_name for pattern in patterns):
return component
# Check against demangled patterns
for component, patterns in DEMANGLED_PATTERNS.items():
if any(pattern in demangled for pattern in patterns):
return component
# Special cases that need more complex logic
# Check if spi_flash vs spi_driver
if "spi_" in symbol_name or "SPI" in symbol_name:
return "spi_flash" if "spi_flash" in symbol_name else "spi_driver"
# libc special printf variants
if (
symbol_name.startswith("_")
and symbol_name[1:].replace("_r", "").replace("v", "").replace("s", "")
in _LIBC_PRINTF_SCANF_FAMILY
):
return "libc"
# Track uncategorized symbols for analysis
return "other"
def _batch_demangle_symbols(self, symbols: list[str]) -> None:
"""Batch demangle C++ symbol names for efficiency."""
if not symbols:
return
_LOGGER.info("Demangling %d symbols", len(symbols))
self._demangle_cache = batch_demangle(symbols, objdump_path=self.objdump_path)
_LOGGER.info("Successfully demangled %d symbols", len(self._demangle_cache))
def _demangle_symbol(self, symbol: str) -> str:
"""Get demangled C++ symbol name from cache."""
return self._demangle_cache.get(symbol, symbol)
def _categorize_esphome_core_symbol(self, demangled: str) -> str:
"""Categorize ESPHome core symbols into subcategories."""
# Special patterns that need to be checked separately
if any(pattern in demangled for pattern in _CPP_RUNTIME_PATTERNS):
return "C++ Runtime (vtables/RTTI)"
if demangled.startswith(_NAMESPACE_STD):
return "C++ STL"
# Check against patterns from const.py
for category, patterns in CORE_SUBCATEGORY_PATTERNS.items():
if any(pattern in demangled for pattern in patterns):
return category
return "Other Core"
def _find_object_files_dir(self) -> Path | None:
"""Find the directory containing object files for this build.
Returns:
Path to the directory containing .o files, or None if not found.
"""
# The ELF is typically at .pioenvs/<env>/firmware.elf
# Object files are in .pioenvs/<env>/src/ and .pioenvs/<env>/lib*/
pioenvs_dir = self.elf_path.parent
if pioenvs_dir.exists() and any(pioenvs_dir.glob("src/*.o")):
return pioenvs_dir
return None
@staticmethod
def _parse_nm_cswtch_output(
output: str,
base_dir: Path | None,
cswtch_map: dict[str, list[tuple[str, int]]],
) -> None:
"""Parse nm output for CSWTCH symbols and add to cswtch_map.
Handles both ``.o`` files and ``.a`` archives.
nm output formats::
.o files: /path/file.o:hex_addr hex_size type name
.a files: /path/lib.a:member.o:hex_addr hex_size type name
For ``.o`` files, paths are made relative to *base_dir* when possible.
For ``.a`` archives (detected by ``:`` in the file portion), paths are
formatted as ``archive_stem/member.o`` (e.g. ``liblwip2-536-feat/lwip-esp.o``).
Args:
output: Raw stdout from ``nm --print-file-name -S``.
base_dir: Base directory for computing relative paths of ``.o`` files.
Pass ``None`` when scanning archives outside the build tree.
cswtch_map: Dict to populate, mapping ``"CSWTCH$N:size"`` to source list.
"""
for line in output.splitlines():
if "CSWTCH$" not in line:
continue
# Split on last ":" that precedes a hex address.
# For .o: "filepath.o" : "hex_addr hex_size type name"
# For .a: "filepath.a:member.o" : "hex_addr hex_size type name"
parts_after_colon = line.rsplit(":", 1)
if len(parts_after_colon) != 2:
continue
file_path = parts_after_colon[0]
fields = parts_after_colon[1].split()
# fields: [address, size, type, name]
if len(fields) < 4:
continue
sym_name = fields[3]
if not sym_name.startswith("CSWTCH$"):
continue
try:
size = int(fields[1], 16)
except ValueError:
continue
# Determine readable source path
if ":" in file_path:
# Archive format: "archive.a:member.o" → "archive_stem/member.o"
archive_part, member = file_path.rsplit(":", 1)
archive_name = Path(archive_part).stem
rel_path = f"{archive_name}/{member}"
elif base_dir is not None:
try:
rel_path = str(Path(file_path).relative_to(base_dir))
except ValueError:
rel_path = file_path
else:
rel_path = file_path
key = f"{sym_name}:{size}"
cswtch_map[key].append((rel_path, size))
def _run_nm_cswtch_scan(
self,
files: list[Path],
base_dir: Path | None,
cswtch_map: dict[str, list[tuple[str, int]]],
) -> None:
"""Run nm on *files* and add any CSWTCH symbols to *cswtch_map*.
Args:
files: Object (``.o``) or archive (``.a``) files to scan.
base_dir: Base directory for relative path computation (see
:meth:`_parse_nm_cswtch_output`).
cswtch_map: Dict to populate with results.
"""
if not self.nm_path or not files:
return
_LOGGER.debug("Scanning %d files for CSWTCH symbols", len(files))
result = run_tool(
[self.nm_path, "--print-file-name", "-S"] + [str(f) for f in files],
timeout=30,
)
if result is None or result.returncode != 0:
return
self._parse_nm_cswtch_output(result.stdout, base_dir, cswtch_map)
def _scan_cswtch_in_sdk_archives(
self, cswtch_map: dict[str, list[tuple[str, int]]]
) -> None:
"""Scan SDK library archives (.a) for CSWTCH symbols.
Prebuilt SDK libraries (e.g. lwip, bearssl) are not compiled from source,
so their CSWTCH symbols only exist inside ``.a`` archives. Results are
merged into *cswtch_map* for keys not already found in ``.o`` files.
The same source file (e.g. ``lwip-esp.o``) often appears in multiple
library variants (``liblwip2-536.a``, ``liblwip2-1460-feat.a``, etc.),
so results are deduplicated by member name.
"""
sdk_dirs = self._find_sdk_library_dirs()
if not sdk_dirs:
return
sdk_archives = sorted(a for sdk_dir in sdk_dirs for a in sdk_dir.glob("*.a"))
sdk_map: dict[str, list[tuple[str, int]]] = defaultdict(list)
self._run_nm_cswtch_scan(sdk_archives, None, sdk_map)
# Merge SDK results, deduplicating by member name.
for key, sources in sdk_map.items():
if key in cswtch_map:
continue
seen: dict[str, tuple[str, int]] = {}
for path, sz in sources:
member = Path(path).name
if member not in seen:
seen[member] = (path, sz)
cswtch_map[key] = list(seen.values())
def _source_file_to_component(self, source_file: str) -> str:
"""Map a source object file path to its component name.
Args:
source_file: Relative path like 'src/esphome/components/wifi/wifi_component.cpp.o'
Returns:
Component name like '[esphome]wifi' or the source file if unknown.
"""
parts = Path(source_file).parts
# ESPHome component: src/esphome/components/<name>/...
if "components" in parts:
idx = parts.index("components")
if idx + 1 < len(parts):
component_name = parts[idx + 1]
if component_name in get_esphome_components():
return f"{_COMPONENT_PREFIX_ESPHOME}{component_name}"
if component_name in self.external_components:
return f"{_COMPONENT_PREFIX_EXTERNAL}{component_name}"
# ESPHome core: src/esphome/core/... or src/esphome/...
if "core" in parts and "esphome" in parts:
return _COMPONENT_CORE
if "esphome" in parts and "components" not in parts:
return _COMPONENT_CORE
# Framework/library files - return the first path component
# e.g., lib65b/ESPAsyncTCP/... -> lib65b
# FrameworkArduino/... -> FrameworkArduino
return parts[0] if parts else source_file
def _analyze_cswtch_symbols(self) -> None:
"""Analyze CSWTCH (GCC switch table) symbols by tracing to source objects.
CSWTCH symbols are compiler-generated lookup tables for switch statements.
They are local symbols, so the same name can appear in different object files.
This method scans .o files and SDK archives to attribute them to their
source components.
"""
obj_dir = self._find_object_files_dir()
if obj_dir is None:
_LOGGER.debug("No object files directory found, skipping CSWTCH analysis")
return
# Scan build-dir object files for CSWTCH symbols
cswtch_map: dict[str, list[tuple[str, int]]] = defaultdict(list)
self._run_nm_cswtch_scan(sorted(obj_dir.rglob("*.o")), obj_dir, cswtch_map)
# Also scan SDK library archives (.a) for CSWTCH symbols.
# Prebuilt SDK libraries (e.g. lwip, bearssl) are not compiled from source
# so their symbols only exist inside .a archives, not as loose .o files.
self._scan_cswtch_in_sdk_archives(cswtch_map)
if not cswtch_map:
_LOGGER.debug("No CSWTCH symbols found in object files or SDK archives")
return
# Collect CSWTCH symbols from the ELF (already parsed in sections)
# Include section_name for re-attribution of component totals
elf_cswtch = [
(symbol_name, size, section_name)
for section_name, section in self.sections.items()
for symbol_name, size, _ in section.symbols
if symbol_name.startswith("CSWTCH$")
]
_LOGGER.debug(
"Found %d CSWTCH symbols in ELF, %d unique in object files",
len(elf_cswtch),
len(cswtch_map),
)
# Match ELF CSWTCH symbols to source files and re-attribute component totals.
# _categorize_symbols() already ran and put these into "other" since CSWTCH$
# names don't match any component pattern. We move the bytes to the correct
# component based on the object file mapping.
other_mem = self.components.get("other")
for sym_name, size, section_name in elf_cswtch:
key = f"{sym_name}:{size}"
sources = cswtch_map.get(key, [])
if len(sources) == 1:
source_file = sources[0][0]
component = self._source_file_to_component(source_file)
elif len(sources) > 1:
# Ambiguous - multiple object files have same CSWTCH name+size
source_file = "ambiguous"
component = "ambiguous"
_LOGGER.debug(
"Ambiguous CSWTCH %s (%d B) found in %d files: %s",
sym_name,
size,
len(sources),
", ".join(src for src, _ in sources),
)
else:
source_file = "unknown"
component = "unknown"
self._cswtch_symbols.append((sym_name, size, source_file, component))
# Re-attribute from "other" to the correct component
if (
component not in ("other", "unknown", "ambiguous")
and other_mem is not None
):
other_mem.add_section_size(section_name, -size)
if component not in self.components:
self.components[component] = ComponentMemory(component)
self.components[component].add_section_size(section_name, size)
# Sort by size descending
self._cswtch_symbols.sort(key=lambda x: x[1], reverse=True)
total_size = sum(size for _, size, _, _ in self._cswtch_symbols)
_LOGGER.debug(
"CSWTCH analysis: %d symbols, %d bytes total",
len(self._cswtch_symbols),
total_size,
)
def get_unattributed_ram(self) -> tuple[int, int, int]:
"""Get unattributed RAM sizes (SDK/framework overhead).
Returns:
Tuple of (unattributed_bss, unattributed_data, total_unattributed)
These are bytes in RAM sections that have no corresponding symbols.
"""
bss_section = self.sections.get(".bss")
data_section = self.sections.get(".data")
unattributed_bss = 0
unattributed_data = 0
if bss_section:
unattributed_bss = max(0, bss_section.total_size - bss_section.symbol_size)
if data_section:
unattributed_data = max(
0, data_section.total_size - data_section.symbol_size
)
return unattributed_bss, unattributed_data, unattributed_bss + unattributed_data
def _find_sdk_library_dirs(self) -> list[Path]:
"""Find SDK library directories based on platform.
Returns:
List of paths to SDK library directories containing .a files.
"""
sdk_dirs: list[Path] = []
if self._idedata is None:
return sdk_dirs
# Get the CC path to determine the framework location
cc_path = getattr(self._idedata, "cc_path", None)
if not cc_path:
return sdk_dirs
cc_path = Path(cc_path)
# For ESP8266 Arduino framework
# CC is like: ~/.platformio/packages/toolchain-xtensa/bin/xtensa-lx106-elf-gcc
# SDK libs are in: ~/.platformio/packages/framework-arduinoespressif8266/tools/sdk/lib/
if "xtensa-lx106" in str(cc_path):
platformio_dir = cc_path.parent.parent.parent
esp8266_sdk = (
platformio_dir
/ "framework-arduinoespressif8266"
/ "tools"
/ "sdk"
/ "lib"
)
if esp8266_sdk.exists():
sdk_dirs.append(esp8266_sdk)
# Also check for NONOSDK subdirectories (closed-source libs)
sdk_dirs.extend(
subdir
for subdir in esp8266_sdk.iterdir()
if subdir.is_dir() and subdir.name.startswith("NONOSDK")
)
# For ESP32 IDF framework
# CC is like: ~/.platformio/packages/toolchain-xtensa-esp-elf/bin/xtensa-esp32-elf-gcc
# or: ~/.platformio/packages/toolchain-riscv32-esp/bin/riscv32-esp-elf-gcc
elif "xtensa-esp" in str(cc_path) or "riscv32-esp" in str(cc_path):
# Detect ESP32 variant from CC path or defines
variant = self._detect_esp32_variant()
if variant:
platformio_dir = cc_path.parent.parent.parent
espidf_dir = platformio_dir / "framework-espidf" / "components"
if espidf_dir.exists():
# Find all directories named after the variant that contain .a files
# This handles various ESP-IDF library layouts:
# - components/*/lib/<variant>/
# - components/*/<variant>/
# - components/*/lib/lib/<variant>/
# - components/*/*/lib_*/<variant>/
sdk_dirs.extend(
variant_dir
for variant_dir in espidf_dir.rglob(variant)
if variant_dir.is_dir() and any(variant_dir.glob("*.a"))
)
return sdk_dirs
def _detect_esp32_variant(self) -> str | None:
"""Detect ESP32 variant from idedata defines.
Returns:
Variant string like 'esp32', 'esp32s2', 'esp32c3', etc. or None.
"""
if self._idedata is None:
return None
defines = getattr(self._idedata, "defines", [])
if not defines:
return None
# ESPHome always adds USE_ESP32_VARIANT_xxx defines
variant_prefix = "USE_ESP32_VARIANT_"
for define in defines:
if define.startswith(variant_prefix):
# Extract variant name and convert to lowercase
# USE_ESP32_VARIANT_ESP32 -> esp32
# USE_ESP32_VARIANT_ESP32S3 -> esp32s3
return define[len(variant_prefix) :].lower()
return None
def _parse_sdk_library(
self, lib_path: Path
) -> tuple[list[tuple[str, int, str, bool]], set[str]]:
"""Parse a single SDK library for symbols.
Args:
lib_path: Path to the .a library file
Returns:
Tuple of:
- List of BSS/DATA symbols: (symbol_name, size, section, is_local)
- Set of global BSS/DATA symbol names (for checking if RAM is linked)
"""
ram_symbols: list[tuple[str, int, str, bool]] = []
global_ram_symbols: set[str] = set()
result = run_tool([self.nm_path, "--size-sort", str(lib_path)], timeout=10)
if result is None:
return ram_symbols, global_ram_symbols
for line in result.stdout.splitlines():
parts = line.split()
if len(parts) < 3:
continue
try:
size = int(parts[0], 16)
sym_type = parts[1]
name = parts[2]
# Only collect BSS (b/B) and DATA (d/D) for RAM analysis
if sym_type in ("b", "B"):
section = ".bss"
is_local = sym_type == "b"
ram_symbols.append((name, size, section, is_local))
# Track global RAM symbols (B/D) for linking check
if sym_type == "B":
global_ram_symbols.add(name)
elif sym_type in ("d", "D"):
section = ".data"
is_local = sym_type == "d"
ram_symbols.append((name, size, section, is_local))
if sym_type == "D":
global_ram_symbols.add(name)
except (ValueError, IndexError):
continue
return ram_symbols, global_ram_symbols
def _analyze_sdk_libraries(self) -> None:
"""Analyze SDK libraries to find symbols not in the ELF.
This finds static/local symbols from closed-source SDK libraries
that consume RAM but don't appear in the final ELF symbol table.
Only includes symbols from libraries that have RAM actually linked
(at least one global BSS/DATA symbol in the ELF).
"""
sdk_dirs = self._find_sdk_library_dirs()
if not sdk_dirs:
_LOGGER.debug("No SDK library directories found")
return
_LOGGER.debug("Analyzing SDK libraries in %d directories", len(sdk_dirs))
# Track seen symbols to avoid duplicates from multiple SDK versions
seen_symbols: set[str] = set()
for sdk_dir in sdk_dirs:
for lib_path in sorted(sdk_dir.glob("*.a")):
lib_name = lib_path.name
ram_symbols, global_ram_symbols = self._parse_sdk_library(lib_path)
# Check if this library's RAM is actually linked by seeing if any
# of its global BSS/DATA symbols appear in the ELF
if not global_ram_symbols & self._elf_symbol_names:
# No RAM from this library is in the ELF - skip it
continue
for name, size, section, is_local in ram_symbols:
# Skip if already in ELF or already seen from another lib
if name in self._elf_symbol_names or name in seen_symbols:
continue
# Only track symbols with non-zero size
if size > 0:
self._sdk_symbols.append(
SDKSymbol(
name=name,
size=size,
library=lib_name,
section=section,
is_local=is_local,
)
)
seen_symbols.add(name)
# Demangle SDK symbols for better readability
if self._sdk_symbols:
sdk_names = [sym.name for sym in self._sdk_symbols]
demangled_map = batch_demangle(sdk_names, objdump_path=self.objdump_path)
for sym in self._sdk_symbols:
sym.demangled = demangled_map.get(sym.name, sym.name)
# Sort by size descending for reporting
self._sdk_symbols.sort(key=lambda s: s.size, reverse=True)
total_sdk_ram = sum(s.size for s in self._sdk_symbols)
_LOGGER.debug(
"Found %d SDK symbols not in ELF, totaling %d bytes",
len(self._sdk_symbols),
total_sdk_ram,
)
def get_sdk_ram_symbols(self) -> list[SDKSymbol]:
"""Get SDK symbols that consume RAM but aren't in the ELF symbol table.
Returns:
List of SDKSymbol objects sorted by size descending.
"""
return self._sdk_symbols
def get_sdk_ram_by_library(self) -> dict[str, list[SDKSymbol]]:
"""Get SDK RAM symbols grouped by library.
Returns:
Dictionary mapping library name to list of symbols.
"""
by_lib: dict[str, list[SDKSymbol]] = defaultdict(list)
for sym in self._sdk_symbols:
by_lib[sym.library].append(sym)
return dict(by_lib)
if __name__ == "__main__":
from .cli import main
main()