1
0
mirror of https://github.com/esphome/esphome.git synced 2025-09-07 13:52:20 +01:00
Files
esphome/esphome/components/fs3000/fs3000.cpp
J. Nick Koston 3d0cea4ce3 revert
2025-07-24 16:28:31 -10:00

108 lines
3.8 KiB
C++

#include "fs3000.h"
#include "esphome/core/log.h"
namespace esphome {
namespace fs3000 {
static const char *const TAG = "fs3000";
void FS3000Component::setup() {
ESP_LOGCONFIG(TAG, "Running setup");
if (model_ == FIVE) {
// datasheet gives 9 points to interpolate from for the 1005 model
static const uint16_t RAW_DATA_POINTS_1005[9] = {409, 915, 1522, 2066, 2523, 2908, 3256, 3572, 3686};
static const float MPS_DATA_POINTS_1005[9] = {0.0, 1.07, 2.01, 3.0, 3.97, 4.96, 5.98, 6.99, 7.23};
std::copy(RAW_DATA_POINTS_1005, RAW_DATA_POINTS_1005 + 9, this->raw_data_points_);
std::copy(MPS_DATA_POINTS_1005, MPS_DATA_POINTS_1005 + 9, this->mps_data_points_);
} else if (model_ == FIFTEEN) {
// datasheet gives 13 points to extrapolate from for the 1015 model
static const uint16_t RAW_DATA_POINTS_1015[13] = {409, 1203, 1597, 1908, 2187, 2400, 2629,
2801, 3006, 3178, 3309, 3563, 3686};
static const float MPS_DATA_POINTS_1015[13] = {0.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 13.0, 15.0};
std::copy(RAW_DATA_POINTS_1015, RAW_DATA_POINTS_1015 + 13, this->raw_data_points_);
std::copy(MPS_DATA_POINTS_1015, MPS_DATA_POINTS_1015 + 13, this->mps_data_points_);
}
}
void FS3000Component::update() {
// 5 bytes of data read from fs3000 sensor
// byte 1 - checksum
// byte 2 - (lower 4 bits) high byte of sensor reading
// byte 3 - (8 bits) low byte of sensor reading
// byte 4 - generic checksum data
// byte 5 - generic checksum data
uint8_t data[5];
if (!this->read_bytes_raw(data, 5)) {
this->status_set_warning();
ESP_LOGW(TAG, "Error reading data from FS3000");
this->publish_state(NAN);
return;
}
// checksum passes if the modulo 256 sum of the five bytes is 0
uint8_t checksum = 0;
for (uint8_t i : data) {
checksum += i;
}
if (checksum != 0) {
this->status_set_warning();
ESP_LOGW(TAG, "Checksum failure when reading from FS3000");
return;
}
// raw value information is 12 bits
uint16_t raw_value = (data[1] << 8) | data[2];
ESP_LOGV(TAG, "Got raw reading=%i", raw_value);
// convert and publish the raw value into m/s using the table of data points in the datasheet
this->publish_state(fit_raw_(raw_value));
this->status_clear_warning();
}
void FS3000Component::dump_config() {
ESP_LOGCONFIG(TAG, "FS3000:");
LOG_I2C_DEVICE(this);
LOG_UPDATE_INTERVAL(this);
LOG_SENSOR(" ", "Air Velocity", this);
}
float FS3000Component::fit_raw_(uint16_t raw_value) {
// converts a raw value read from the FS3000 into a speed in m/s based on the
// reference data points given in the datasheet
// fits raw reading using a linear interpolation between each data point
uint8_t end = 8; // assume model 1005, which has 9 data points
if (this->model_ == FIFTEEN)
end = 12; // model 1015 has 13 data points
if (raw_value <= this->raw_data_points_[0]) { // less than smallest data point returns first data point
return this->mps_data_points_[0];
} else if (raw_value >= this->raw_data_points_[end]) { // greater than largest data point returns max speed
return this->mps_data_points_[end];
} else {
uint8_t i = 0;
// determine between which data points does the reading fall, i-1 and i
while (raw_value > this->raw_data_points_[i]) {
++i;
}
// calculate the slope of the secant line between the two data points that surrounds the reading
float slope = (this->mps_data_points_[i] - this->mps_data_points_[i - 1]) /
(this->raw_data_points_[i] - this->raw_data_points_[i - 1]);
// return the interpolated value for the reading
return (float(raw_value - this->raw_data_points_[i - 1])) * slope + this->mps_data_points_[i - 1];
}
}
} // namespace fs3000
} // namespace esphome