1
0
mirror of https://github.com/esphome/esphome.git synced 2025-03-19 00:58:13 +00:00
NP v/d Spek c43c9ad1c5
Add RTTTL volume control. (#5968)
Co-authored-by: Jesse Hills <3060199+jesserockz@users.noreply.github.com>
2024-02-28 11:31:33 +13:00

306 lines
8.1 KiB
C++

#include "rtttl.h"
#include <cmath>
#include "esphome/core/hal.h"
#include "esphome/core/log.h"
namespace esphome {
namespace rtttl {
static const char *const TAG = "rtttl";
static const uint32_t DOUBLE_NOTE_GAP_MS = 10;
// These values can also be found as constants in the Tone library (Tone.h)
static const uint16_t NOTES[] = {0, 262, 277, 294, 311, 330, 349, 370, 392, 415, 440, 466, 494,
523, 554, 587, 622, 659, 698, 740, 784, 831, 880, 932, 988, 1047,
1109, 1175, 1245, 1319, 1397, 1480, 1568, 1661, 1760, 1865, 1976, 2093, 2217,
2349, 2489, 2637, 2794, 2960, 3136, 3322, 3520, 3729, 3951};
static const uint16_t I2S_SPEED = 1000;
#undef HALF_PI
static const double HALF_PI = 1.5707963267948966192313216916398;
inline double deg2rad(double degrees) {
static const double PI_ON_180 = 4.0 * atan(1.0) / 180.0;
return degrees * PI_ON_180;
}
void Rtttl::dump_config() { ESP_LOGCONFIG(TAG, "Rtttl"); }
void Rtttl::play(std::string rtttl) {
this->rtttl_ = std::move(rtttl);
this->default_duration_ = 4;
this->default_octave_ = 6;
this->note_duration_ = 0;
int bpm = 63;
uint8_t num;
// Get name
this->position_ = rtttl_.find(':');
// it's somewhat documented to be up to 10 characters but let's be a bit flexible here
if (this->position_ == std::string::npos || this->position_ > 15) {
ESP_LOGE(TAG, "Missing ':' when looking for name.");
return;
}
auto name = this->rtttl_.substr(0, this->position_);
ESP_LOGD(TAG, "Playing song %s", name.c_str());
// get default duration
this->position_ = this->rtttl_.find("d=", this->position_);
if (this->position_ == std::string::npos) {
ESP_LOGE(TAG, "Missing 'd='");
return;
}
this->position_ += 2;
num = this->get_integer_();
if (num > 0)
this->default_duration_ = num;
// get default octave
this->position_ = this->rtttl_.find("o=", this->position_);
if (this->position_ == std::string::npos) {
ESP_LOGE(TAG, "Missing 'o=");
return;
}
this->position_ += 2;
num = get_integer_();
if (num >= 3 && num <= 7)
this->default_octave_ = num;
// get BPM
this->position_ = this->rtttl_.find("b=", this->position_);
if (this->position_ == std::string::npos) {
ESP_LOGE(TAG, "Missing b=");
return;
}
this->position_ += 2;
num = get_integer_();
if (num != 0)
bpm = num;
this->position_ = this->rtttl_.find(':', this->position_);
if (this->position_ == std::string::npos) {
ESP_LOGE(TAG, "Missing second ':'");
return;
}
this->position_++;
// BPM usually expresses the number of quarter notes per minute
this->wholenote_ = 60 * 1000L * 4 / bpm; // this is the time for whole note (in milliseconds)
this->output_freq_ = 0;
this->last_note_ = millis();
this->note_duration_ = 1;
#ifdef USE_SPEAKER
this->samples_sent_ = 0;
this->samples_count_ = 0;
#endif
}
void Rtttl::stop() {
this->note_duration_ = 0;
#ifdef USE_OUTPUT
if (this->output_ != nullptr) {
this->output_->set_level(0.0);
}
#endif
#ifdef USE_SPEAKER
if (this->speaker_ != nullptr) {
if (this->speaker_->is_running()) {
this->speaker_->stop();
}
}
#endif
}
void Rtttl::loop() {
if (this->note_duration_ == 0)
return;
#ifdef USE_SPEAKER
if (this->speaker_ != nullptr) {
if (this->samples_sent_ != this->samples_count_) {
SpeakerSample sample[SAMPLE_BUFFER_SIZE + 1];
int x = 0;
double rem = 0.0;
while (true) {
// Try and send out the remainder of the existing note, one per loop()
if (this->samples_per_wave_ != 0 && this->samples_sent_ >= this->samples_gap_) { // Play note//
rem = ((this->samples_sent_ << 10) % this->samples_per_wave_) * (360.0 / this->samples_per_wave_);
int16_t val = (49152 * this->gain_) * sin(deg2rad(rem));
sample[x].left = val;
sample[x].right = val;
} else {
sample[x].left = 0;
sample[x].right = 0;
}
if (x >= SAMPLE_BUFFER_SIZE || this->samples_sent_ >= this->samples_count_) {
break;
}
this->samples_sent_++;
x++;
}
if (x > 0) {
int send = this->speaker_->play((uint8_t *) (&sample), x * 4);
if (send != x * 4) {
this->samples_sent_ -= (x - (send / 4));
}
return;
}
}
}
#endif
#ifdef USE_OUTPUT
if (this->output_ != nullptr && millis() - this->last_note_ < this->note_duration_)
return;
#endif
if (!this->rtttl_[position_]) {
this->note_duration_ = 0;
#ifdef USE_OUTPUT
if (this->output_ != nullptr) {
this->output_->set_level(0.0);
}
#endif
ESP_LOGD(TAG, "Playback finished");
this->on_finished_playback_callback_.call();
return;
}
// align to note: most rtttl's out there does not add and space after the ',' separator but just in case...
while (this->rtttl_[this->position_] == ',' || this->rtttl_[this->position_] == ' ')
this->position_++;
// first, get note duration, if available
uint8_t num = this->get_integer_();
if (num) {
this->note_duration_ = this->wholenote_ / num;
} else {
this->note_duration_ =
this->wholenote_ / this->default_duration_; // we will need to check if we are a dotted note after
}
uint8_t note;
switch (this->rtttl_[this->position_]) {
case 'c':
note = 1;
break;
case 'd':
note = 3;
break;
case 'e':
note = 5;
break;
case 'f':
note = 6;
break;
case 'g':
note = 8;
break;
case 'a':
note = 10;
break;
case 'b':
note = 12;
break;
case 'p':
default:
note = 0;
}
this->position_++;
// now, get optional '#' sharp
if (this->rtttl_[this->position_] == '#') {
note++;
this->position_++;
}
// now, get optional '.' dotted note
if (this->rtttl_[this->position_] == '.') {
this->note_duration_ += this->note_duration_ / 2;
this->position_++;
}
// now, get scale
uint8_t scale = get_integer_();
if (scale == 0)
scale = this->default_octave_;
bool need_note_gap = false;
// Now play the note
if (note) {
auto note_index = (scale - 4) * 12 + note;
if (note_index < 0 || note_index >= (int) sizeof(NOTES)) {
ESP_LOGE(TAG, "Note out of valid range");
this->note_duration_ = 0;
return;
}
auto freq = NOTES[note_index];
need_note_gap = freq == this->output_freq_;
// Add small silence gap between same note
this->output_freq_ = freq;
ESP_LOGVV(TAG, "playing note: %d for %dms", note, this->note_duration_);
} else {
ESP_LOGVV(TAG, "waiting: %dms", this->note_duration_);
this->output_freq_ = 0;
}
#ifdef USE_OUTPUT
if (this->output_ != nullptr) {
if (need_note_gap) {
this->output_->set_level(0.0);
delay(DOUBLE_NOTE_GAP_MS);
this->note_duration_ -= DOUBLE_NOTE_GAP_MS;
}
if (this->output_freq_ != 0) {
this->output_->update_frequency(this->output_freq_);
this->output_->set_level(this->gain_);
} else {
this->output_->set_level(0.0);
}
}
#endif
#ifdef USE_SPEAKER
if (this->speaker_ != nullptr) {
this->samples_sent_ = 0;
this->samples_gap_ = 0;
this->samples_per_wave_ = 0;
this->samples_count_ = (this->sample_rate_ * this->note_duration_) / 1600; //(ms);
if (need_note_gap) {
this->samples_gap_ = (this->sample_rate_ * DOUBLE_NOTE_GAP_MS) / 1600; //(ms);
}
if (this->output_freq_ != 0) {
this->samples_per_wave_ = (this->sample_rate_ << 10) / this->output_freq_;
// make sure there is enough samples to add a full last sinus.
uint16_t division = ((this->samples_count_ << 10) / this->samples_per_wave_) + 1;
uint16_t x = this->samples_count_;
this->samples_count_ = (division * this->samples_per_wave_);
ESP_LOGD(TAG, "play time old: %d div: %d new: %d %d", x, division, this->samples_count_, this->samples_per_wave_);
this->samples_count_ = this->samples_count_ >> 10;
}
// Convert from frequency in Hz to high and low samples in fixed point
}
#endif
this->last_note_ = millis();
}
} // namespace rtttl
} // namespace esphome