1
0
mirror of https://github.com/esphome/esphome.git synced 2025-04-01 08:28:15 +01:00

177 lines
6.0 KiB
Python

import esphome.codegen as cg
import esphome.config_validation as cv
from esphome.components import sensor
from esphome.const import (
CONF_ACCURACY_DECIMALS,
CONF_DEVICE_CLASS,
CONF_ENTITY_CATEGORY,
CONF_ICON,
CONF_ID,
CONF_RANGE,
CONF_SOURCE,
CONF_SUM,
CONF_TYPE,
CONF_UNIT_OF_MEASUREMENT,
)
from esphome.core.entity_helpers import inherit_property_from
CODEOWNERS = ["@Cat-Ion", "@kahrendt"]
combination_ns = cg.esphome_ns.namespace("combination")
KalmanCombinationComponent = combination_ns.class_(
"KalmanCombinationComponent", cg.Component, sensor.Sensor
)
LinearCombinationComponent = combination_ns.class_(
"LinearCombinationComponent", cg.Component, sensor.Sensor
)
MaximumCombinationComponent = combination_ns.class_(
"MaximumCombinationComponent", cg.Component, sensor.Sensor
)
MeanCombinationComponent = combination_ns.class_(
"MeanCombinationComponent", cg.Component, sensor.Sensor
)
MedianCombinationComponent = combination_ns.class_(
"MedianCombinationComponent", cg.Component, sensor.Sensor
)
MinimumCombinationComponent = combination_ns.class_(
"MinimumCombinationComponent", cg.Component, sensor.Sensor
)
MostRecentCombinationComponent = combination_ns.class_(
"MostRecentCombinationComponent", cg.Component, sensor.Sensor
)
RangeCombinationComponent = combination_ns.class_(
"RangeCombinationComponent", cg.Component, sensor.Sensor
)
SumCombinationComponent = combination_ns.class_(
"SumCombinationComponent", cg.Component, sensor.Sensor
)
CONF_COEFFECIENT = "coeffecient"
CONF_ERROR = "error"
CONF_KALMAN = "kalman"
CONF_LINEAR = "linear"
CONF_MAX = "max"
CONF_MEAN = "mean"
CONF_MEDIAN = "median"
CONF_MIN = "min"
CONF_MOST_RECENTLY_UPDATED = "most_recently_updated"
CONF_PROCESS_STD_DEV = "process_std_dev"
CONF_SOURCES = "sources"
CONF_STD_DEV = "std_dev"
KALMAN_SOURCE_SCHEMA = cv.Schema(
{
cv.Required(CONF_SOURCE): cv.use_id(sensor.Sensor),
cv.Required(CONF_ERROR): cv.templatable(cv.positive_float),
}
)
LINEAR_SOURCE_SCHEMA = cv.Schema(
{
cv.Required(CONF_SOURCE): cv.use_id(sensor.Sensor),
cv.Required(CONF_COEFFECIENT): cv.templatable(cv.float_),
}
)
SENSOR_ONLY_SOURCE_SCHEMA = cv.Schema(
{
cv.Required(CONF_SOURCE): cv.use_id(sensor.Sensor),
}
)
CONFIG_SCHEMA = cv.typed_schema(
{
CONF_KALMAN: sensor.sensor_schema(KalmanCombinationComponent)
.extend(cv.COMPONENT_SCHEMA)
.extend(
{
cv.Required(CONF_PROCESS_STD_DEV): cv.positive_float,
cv.Required(CONF_SOURCES): cv.ensure_list(KALMAN_SOURCE_SCHEMA),
cv.Optional(CONF_STD_DEV): sensor.sensor_schema(),
}
),
CONF_LINEAR: sensor.sensor_schema(LinearCombinationComponent)
.extend(cv.COMPONENT_SCHEMA)
.extend({cv.Required(CONF_SOURCES): cv.ensure_list(LINEAR_SOURCE_SCHEMA)}),
CONF_MAX: sensor.sensor_schema(MaximumCombinationComponent)
.extend(cv.COMPONENT_SCHEMA)
.extend({cv.Required(CONF_SOURCES): cv.ensure_list(SENSOR_ONLY_SOURCE_SCHEMA)}),
CONF_MEAN: sensor.sensor_schema(MeanCombinationComponent)
.extend(cv.COMPONENT_SCHEMA)
.extend({cv.Required(CONF_SOURCES): cv.ensure_list(SENSOR_ONLY_SOURCE_SCHEMA)}),
CONF_MEDIAN: sensor.sensor_schema(MedianCombinationComponent)
.extend(cv.COMPONENT_SCHEMA)
.extend({cv.Required(CONF_SOURCES): cv.ensure_list(SENSOR_ONLY_SOURCE_SCHEMA)}),
CONF_MIN: sensor.sensor_schema(MinimumCombinationComponent)
.extend(cv.COMPONENT_SCHEMA)
.extend({cv.Required(CONF_SOURCES): cv.ensure_list(SENSOR_ONLY_SOURCE_SCHEMA)}),
CONF_MOST_RECENTLY_UPDATED: sensor.sensor_schema(MostRecentCombinationComponent)
.extend(cv.COMPONENT_SCHEMA)
.extend({cv.Required(CONF_SOURCES): cv.ensure_list(SENSOR_ONLY_SOURCE_SCHEMA)}),
CONF_RANGE: sensor.sensor_schema(RangeCombinationComponent)
.extend(cv.COMPONENT_SCHEMA)
.extend({cv.Required(CONF_SOURCES): cv.ensure_list(SENSOR_ONLY_SOURCE_SCHEMA)}),
CONF_SUM: sensor.sensor_schema(SumCombinationComponent)
.extend(cv.COMPONENT_SCHEMA)
.extend({cv.Required(CONF_SOURCES): cv.ensure_list(SENSOR_ONLY_SOURCE_SCHEMA)}),
}
)
# Inherit some sensor values from the first source, for both the state and the error value
# CONF_STATE_CLASS could also be inherited, but might lead to unexpected behaviour with "total_increasing"
properties_to_inherit = [
CONF_ACCURACY_DECIMALS,
CONF_DEVICE_CLASS,
CONF_ENTITY_CATEGORY,
CONF_ICON,
CONF_UNIT_OF_MEASUREMENT,
]
inherit_schema_for_state = [
inherit_property_from(property, [CONF_SOURCES, 0, CONF_SOURCE])
for property in properties_to_inherit
]
inherit_schema_for_std_dev = [
inherit_property_from([CONF_STD_DEV, property], [CONF_SOURCES, 0, CONF_SOURCE])
for property in properties_to_inherit
]
FINAL_VALIDATE_SCHEMA = cv.All(
*inherit_schema_for_state,
*inherit_schema_for_std_dev,
)
async def to_code(config):
var = cg.new_Pvariable(config[CONF_ID])
await cg.register_component(var, config)
await sensor.register_sensor(var, config)
if proces_std_dev := config.get(CONF_PROCESS_STD_DEV):
cg.add(var.set_process_std_dev(proces_std_dev))
for source_conf in config[CONF_SOURCES]:
source = await cg.get_variable(source_conf[CONF_SOURCE])
if config[CONF_TYPE] == CONF_KALMAN:
error = await cg.templatable(
source_conf[CONF_ERROR],
[(float, "x")],
cg.float_,
)
cg.add(var.add_source(source, error))
elif config[CONF_TYPE] == CONF_LINEAR:
coeffecient = await cg.templatable(
source_conf[CONF_COEFFECIENT],
[(float, "x")],
cg.float_,
)
cg.add(var.add_source(source, coeffecient))
else:
cg.add(var.add_source(source))
if CONF_STD_DEV in config:
sens = await sensor.new_sensor(config[CONF_STD_DEV])
cg.add(var.set_std_dev_sensor(sens))