1
0
mirror of https://github.com/esphome/esphome.git synced 2025-03-15 15:18:16 +00:00
esphome/esphome/core/helpers.cpp
2021-11-11 07:15:06 +13:00

485 lines
13 KiB
C++

#include "esphome/core/helpers.h"
#include "esphome/core/defines.h"
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <cstring>
#if defined(USE_ESP8266)
#ifdef USE_WIFI
#include <ESP8266WiFi.h>
#endif
#include <osapi.h>
#elif defined(USE_ESP32_FRAMEWORK_ARDUINO)
#include <Esp.h>
#elif defined(USE_ESP_IDF)
#include "esp_system.h"
#include <freertos/FreeRTOS.h>
#include <freertos/portmacro.h>
#endif
#ifdef USE_ESP32_IGNORE_EFUSE_MAC_CRC
#include "esp_efuse.h"
#include "esp_efuse_table.h"
#endif
#include "esphome/core/log.h"
#include "esphome/core/hal.h"
namespace esphome {
static const char *const TAG = "helpers";
void get_mac_address_raw(uint8_t *mac) {
#ifdef USE_ESP32
#ifdef USE_ESP32_IGNORE_EFUSE_MAC_CRC
// On some devices, the MAC address that is burnt into EFuse does not
// match the CRC that goes along with it. For those devices, this
// work-around reads and uses the MAC address as-is from EFuse,
// without doing the CRC check.
esp_efuse_read_field_blob(ESP_EFUSE_MAC_FACTORY, mac, 48);
#else
esp_efuse_mac_get_default(mac);
#endif
#endif
#if (defined USE_ESP8266 && defined USE_WIFI)
WiFi.macAddress(mac);
#endif
}
std::string get_mac_address() {
char tmp[20];
uint8_t mac[6];
get_mac_address_raw(mac);
#ifdef USE_WIFI
sprintf(tmp, "%02x%02x%02x%02x%02x%02x", mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
#else
return "";
#endif
return std::string(tmp);
}
std::string get_mac_address_pretty() {
char tmp[20];
uint8_t mac[6];
get_mac_address_raw(mac);
sprintf(tmp, "%02X:%02X:%02X:%02X:%02X:%02X", mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
return std::string(tmp);
}
#ifdef USE_ESP32
void set_mac_address(uint8_t *mac) { esp_base_mac_addr_set(mac); }
#endif
std::string generate_hostname(const std::string &base) { return base + std::string("-") + get_mac_address(); }
uint32_t random_uint32() {
#ifdef USE_ESP32
return esp_random();
#elif defined(USE_ESP8266)
return os_random();
#endif
}
double random_double() { return random_uint32() / double(UINT32_MAX); }
float random_float() { return float(random_double()); }
void fill_random(uint8_t *data, size_t len) {
#if defined(USE_ESP_IDF) || defined(USE_ESP32_FRAMEWORK_ARDUINO)
esp_fill_random(data, len);
#elif defined(USE_ESP8266)
int err = os_get_random(data, len);
assert(err == 0);
#else
#error "No random source for this system config"
#endif
}
static uint32_t fast_random_seed = 0; // NOLINT(cppcoreguidelines-avoid-non-const-global-variables)
void fast_random_set_seed(uint32_t seed) { fast_random_seed = seed; }
uint32_t fast_random_32() {
fast_random_seed = (fast_random_seed * 2654435769ULL) + 40503ULL;
return fast_random_seed;
}
uint16_t fast_random_16() {
uint32_t rand32 = fast_random_32();
return (rand32 & 0xFFFF) + (rand32 >> 16);
}
uint8_t fast_random_8() {
uint8_t rand32 = fast_random_32();
return (rand32 & 0xFF) + ((rand32 >> 8) & 0xFF);
}
float gamma_correct(float value, float gamma) {
if (value <= 0.0f)
return 0.0f;
if (gamma <= 0.0f)
return value;
return powf(value, gamma);
}
float gamma_uncorrect(float value, float gamma) {
if (value <= 0.0f)
return 0.0f;
if (gamma <= 0.0f)
return value;
return powf(value, 1 / gamma);
}
std::string to_lowercase_underscore(std::string s) {
std::transform(s.begin(), s.end(), s.begin(), ::tolower);
std::replace(s.begin(), s.end(), ' ', '_');
return s;
}
std::string sanitize_string_allowlist(const std::string &s, const std::string &allowlist) {
std::string out(s);
out.erase(std::remove_if(out.begin(), out.end(),
[&allowlist](const char &c) { return allowlist.find(c) == std::string::npos; }),
out.end());
return out;
}
std::string sanitize_hostname(const std::string &hostname) {
std::string s = sanitize_string_allowlist(hostname, HOSTNAME_CHARACTER_ALLOWLIST);
return truncate_string(s, 63);
}
std::string truncate_string(const std::string &s, size_t length) {
if (s.length() > length)
return s.substr(0, length);
return s;
}
std::string value_accuracy_to_string(float value, int8_t accuracy_decimals) {
if (accuracy_decimals < 0) {
auto multiplier = powf(10.0f, accuracy_decimals);
value = roundf(value * multiplier) / multiplier;
accuracy_decimals = 0;
}
char tmp[32]; // should be enough, but we should maybe improve this at some point.
snprintf(tmp, sizeof(tmp), "%.*f", accuracy_decimals, value);
return std::string(tmp);
}
std::string uint64_to_string(uint64_t num) {
char buffer[17];
auto *address16 = reinterpret_cast<uint16_t *>(&num);
snprintf(buffer, sizeof(buffer), "%04X%04X%04X%04X", address16[3], address16[2], address16[1], address16[0]);
return std::string(buffer);
}
std::string uint32_to_string(uint32_t num) {
char buffer[9];
auto *address16 = reinterpret_cast<uint16_t *>(&num);
snprintf(buffer, sizeof(buffer), "%04X%04X", address16[1], address16[0]);
return std::string(buffer);
}
ParseOnOffState parse_on_off(const char *str, const char *on, const char *off) {
if (on == nullptr && strcasecmp(str, "on") == 0)
return PARSE_ON;
if (on != nullptr && strcasecmp(str, on) == 0)
return PARSE_ON;
if (off == nullptr && strcasecmp(str, "off") == 0)
return PARSE_OFF;
if (off != nullptr && strcasecmp(str, off) == 0)
return PARSE_OFF;
if (strcasecmp(str, "toggle") == 0)
return PARSE_TOGGLE;
return PARSE_NONE;
}
const char *const HOSTNAME_CHARACTER_ALLOWLIST = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789-_";
uint8_t crc8(uint8_t *data, uint8_t len) {
uint8_t crc = 0;
while ((len--) != 0u) {
uint8_t inbyte = *data++;
for (uint8_t i = 8; i != 0u; i--) {
bool mix = (crc ^ inbyte) & 0x01;
crc >>= 1;
if (mix)
crc ^= 0x8C;
inbyte >>= 1;
}
}
return crc;
}
void delay_microseconds_safe(uint32_t us) { // avoids CPU locks that could trigger WDT or affect WiFi/BT stability
auto start = micros();
const uint32_t lag = 5000; // microseconds, specifies the maximum time for a CPU busy-loop.
// it must be larger than the worst-case duration of a delay(1) call (hardware tasks)
// 5ms is conservative, it could be reduced when exact BT/WiFi stack delays are known
if (us > lag) {
delay((us - lag) / 1000UL); // note: in disabled-interrupt contexts delay() won't actually sleep
while (micros() - start < us - lag)
delay(1); // in those cases, this loop allows to yield for BT/WiFi stack tasks
}
while (micros() - start < us) // fine delay the remaining usecs
;
}
uint8_t reverse_bits_8(uint8_t x) {
x = ((x & 0xAA) >> 1) | ((x & 0x55) << 1);
x = ((x & 0xCC) >> 2) | ((x & 0x33) << 2);
x = ((x & 0xF0) >> 4) | ((x & 0x0F) << 4);
return x;
}
uint16_t reverse_bits_16(uint16_t x) {
return uint16_t(reverse_bits_8(x & 0xFF) << 8) | uint16_t(reverse_bits_8(x >> 8));
}
std::string to_string(const std::string &val) { return val; }
std::string to_string(int val) {
char buf[64];
sprintf(buf, "%d", val);
return buf;
}
std::string to_string(long val) { // NOLINT
char buf[64];
sprintf(buf, "%ld", val);
return buf;
}
std::string to_string(long long val) { // NOLINT
char buf[64];
sprintf(buf, "%lld", val);
return buf;
}
std::string to_string(unsigned val) { // NOLINT
char buf[64];
sprintf(buf, "%u", val);
return buf;
}
std::string to_string(unsigned long val) { // NOLINT
char buf[64];
sprintf(buf, "%lu", val);
return buf;
}
std::string to_string(unsigned long long val) { // NOLINT
char buf[64];
sprintf(buf, "%llu", val);
return buf;
}
std::string to_string(float val) {
char buf[64];
sprintf(buf, "%f", val);
return buf;
}
std::string to_string(double val) {
char buf[64];
sprintf(buf, "%f", val);
return buf;
}
std::string to_string(long double val) {
char buf[64];
sprintf(buf, "%Lf", val);
return buf;
}
optional<int> parse_hex(const char chr) {
int out = chr;
if (out >= '0' && out <= '9')
return (out - '0');
if (out >= 'A' && out <= 'F')
return (10 + (out - 'A'));
if (out >= 'a' && out <= 'f')
return (10 + (out - 'a'));
return {};
}
optional<int> parse_hex(const std::string &str, size_t start, size_t length) {
if (str.length() < start) {
return {};
}
size_t end = start + length;
if (str.length() < end) {
return {};
}
int out = 0;
for (size_t i = start; i < end; i++) {
char chr = str[i];
auto digit = parse_hex(chr);
if (!digit.has_value()) {
ESP_LOGW(TAG, "Can't convert '%s' to number, invalid character %c!", str.substr(start, length).c_str(), chr);
return {};
}
out = (out << 4) | *digit;
}
return out;
}
uint32_t fnv1_hash(const std::string &str) {
uint32_t hash = 2166136261UL;
for (char c : str) {
hash *= 16777619UL;
hash ^= c;
}
return hash;
}
bool str_equals_case_insensitive(const std::string &a, const std::string &b) {
return strcasecmp(a.c_str(), b.c_str()) == 0;
}
template<uint32_t> uint32_t reverse_bits(uint32_t x) {
return uint32_t(reverse_bits_16(x & 0xFFFF) << 16) | uint32_t(reverse_bits_16(x >> 16));
}
static int high_freq_num_requests = 0; // NOLINT(cppcoreguidelines-avoid-non-const-global-variables)
void HighFrequencyLoopRequester::start() {
if (this->started_)
return;
high_freq_num_requests++;
this->started_ = true;
}
void HighFrequencyLoopRequester::stop() {
if (!this->started_)
return;
high_freq_num_requests--;
this->started_ = false;
}
bool HighFrequencyLoopRequester::is_high_frequency() { return high_freq_num_requests > 0; }
template<typename T> T clamp(const T val, const T min, const T max) {
if (val < min)
return min;
if (val > max)
return max;
return val;
}
template uint8_t clamp(uint8_t, uint8_t, uint8_t);
template float clamp(float, float, float);
template int clamp(int, int, int);
float lerp(float completion, float start, float end) { return start + (end - start) * completion; }
bool str_startswith(const std::string &full, const std::string &start) { return full.rfind(start, 0) == 0; }
bool str_endswith(const std::string &full, const std::string &ending) {
return full.rfind(ending) == (full.size() - ending.size());
}
std::string str_sprintf(const char *fmt, ...) {
std::string str;
va_list args;
va_start(args, fmt);
size_t length = vsnprintf(nullptr, 0, fmt, args);
va_end(args);
str.resize(length);
va_start(args, fmt);
vsnprintf(&str[0], length + 1, fmt, args);
va_end(args);
return str;
}
uint16_t encode_uint16(uint8_t msb, uint8_t lsb) { return (uint16_t(msb) << 8) | uint16_t(lsb); }
std::array<uint8_t, 2> decode_uint16(uint16_t value) {
uint8_t msb = (value >> 8) & 0xFF;
uint8_t lsb = (value >> 0) & 0xFF;
return {msb, lsb};
}
uint32_t encode_uint32(uint8_t msb, uint8_t byte2, uint8_t byte3, uint8_t lsb) {
return (uint32_t(msb) << 24) | (uint32_t(byte2) << 16) | (uint32_t(byte3) << 8) | uint32_t(lsb);
}
std::string hexencode(const uint8_t *data, uint32_t len) {
char buf[20];
std::string res;
for (size_t i = 0; i < len; i++) {
if (i + 1 != len) {
sprintf(buf, "%02X.", data[i]);
} else {
sprintf(buf, "%02X ", data[i]);
}
res += buf;
}
sprintf(buf, "(%u)", len);
res += buf;
return res;
}
void rgb_to_hsv(float red, float green, float blue, int &hue, float &saturation, float &value) {
float max_color_value = std::max(std::max(red, green), blue);
float min_color_value = std::min(std::min(red, green), blue);
float delta = max_color_value - min_color_value;
if (delta == 0)
hue = 0;
else if (max_color_value == red)
hue = int(fmod(((60 * ((green - blue) / delta)) + 360), 360));
else if (max_color_value == green)
hue = int(fmod(((60 * ((blue - red) / delta)) + 120), 360));
else if (max_color_value == blue)
hue = int(fmod(((60 * ((red - green) / delta)) + 240), 360));
if (max_color_value == 0)
saturation = 0;
else
saturation = delta / max_color_value;
value = max_color_value;
}
void hsv_to_rgb(int hue, float saturation, float value, float &red, float &green, float &blue) {
float chroma = value * saturation;
float hue_prime = fmod(hue / 60.0, 6);
float intermediate = chroma * (1 - fabs(fmod(hue_prime, 2) - 1));
float delta = value - chroma;
if (0 <= hue_prime && hue_prime < 1) {
red = chroma;
green = intermediate;
blue = 0;
} else if (1 <= hue_prime && hue_prime < 2) {
red = intermediate;
green = chroma;
blue = 0;
} else if (2 <= hue_prime && hue_prime < 3) {
red = 0;
green = chroma;
blue = intermediate;
} else if (3 <= hue_prime && hue_prime < 4) {
red = 0;
green = intermediate;
blue = chroma;
} else if (4 <= hue_prime && hue_prime < 5) {
red = intermediate;
green = 0;
blue = chroma;
} else if (5 <= hue_prime && hue_prime < 6) {
red = chroma;
green = 0;
blue = intermediate;
} else {
red = 0;
green = 0;
blue = 0;
}
red += delta;
green += delta;
blue += delta;
}
#ifdef USE_ESP8266
#ifdef USE_WIFI
IRAM_ATTR InterruptLock::InterruptLock() { xt_state_ = xt_rsil(15); }
IRAM_ATTR InterruptLock::~InterruptLock() { xt_wsr_ps(xt_state_); }
#else
IRAM_ATTR InterruptLock::InterruptLock() {}
IRAM_ATTR InterruptLock::~InterruptLock() {}
#endif
#endif
#ifdef USE_ESP32
IRAM_ATTR InterruptLock::InterruptLock() { portDISABLE_INTERRUPTS(); }
IRAM_ATTR InterruptLock::~InterruptLock() { portENABLE_INTERRUPTS(); }
#endif
} // namespace esphome