1
0
mirror of https://github.com/esphome/esphome.git synced 2025-04-09 20:30:31 +01:00
esphome/esphome/components/wifi/wifi_component_esp8266.cpp
Otto Winter 13522c8f19
WIP: ESP8266 work on connection issues (#648)
* Erase all flash for USB uploads on ESP8266s

Previously, only erased "write regions".

Downside: Config for other FWs like tasmota could be affected

Upside: Potentially fixes some ESP8266 connection issues

Related: https://github.com/esphome/issues/issues/455#issuecomment-503524479

* Clear WiFi settings for ESP8266

Clears wifi settings from retained storage on ESP8266 (if set).

Unsure if this is the actual issue, but it won't cause problems either.

* Update wifi_component_esp8266.cpp

* Revert erase chip for testing

* Improve wait_time calculation
2019-07-02 13:03:11 +02:00

635 lines
18 KiB
C++

#include "wifi_component.h"
#ifdef ARDUINO_ARCH_ESP8266
#include <user_interface.h>
#include <utility>
#include <algorithm>
#include "lwip/err.h"
#include "lwip/dns.h"
#include "esphome/core/helpers.h"
#include "esphome/core/log.h"
#include "esphome/core/esphal.h"
#include "esphome/core/util.h"
#include "esphome/core/application.h"
namespace esphome {
namespace wifi {
static const char *TAG = "wifi_esp8266";
bool WiFiComponent::wifi_mode_(optional<bool> sta, optional<bool> ap) {
uint8_t current_mode = wifi_get_opmode();
bool current_sta = current_mode & 0b01;
bool current_ap = current_mode & 0b10;
bool target_sta = sta.value_or(current_sta);
bool target_ap = ap.value_or(current_ap);
if (current_sta == target_sta && current_ap == target_ap)
return true;
if (target_sta && !current_sta) {
ESP_LOGV(TAG, "Enabling STA.");
} else if (!target_sta && current_sta) {
ESP_LOGV(TAG, "Disabling STA.");
// Stop DHCP client when disabling STA
// See https://github.com/esp8266/Arduino/pull/5703
wifi_station_dhcpc_stop();
}
if (target_ap && !current_ap) {
ESP_LOGV(TAG, "Enabling AP.");
} else if (!target_ap && current_ap) {
ESP_LOGV(TAG, "Disabling AP.");
}
ETS_UART_INTR_DISABLE();
uint8_t mode = 0;
if (target_sta)
mode |= 0b01;
if (target_ap)
mode |= 0b10;
bool ret = wifi_set_opmode_current(mode);
ETS_UART_INTR_ENABLE();
if (!ret) {
ESP_LOGW(TAG, "Setting WiFi mode failed!");
}
return ret;
}
bool WiFiComponent::wifi_apply_power_save_() {
sleep_type_t power_save;
switch (this->power_save_) {
case WIFI_POWER_SAVE_LIGHT:
power_save = LIGHT_SLEEP_T;
break;
case WIFI_POWER_SAVE_HIGH:
power_save = MODEM_SLEEP_T;
break;
case WIFI_POWER_SAVE_NONE:
default:
power_save = NONE_SLEEP_T;
break;
}
return wifi_set_sleep_type(power_save);
}
bool WiFiComponent::wifi_sta_ip_config_(optional<ManualIP> manual_ip) {
// enable STA
if (!this->wifi_mode_(true, {}))
return false;
enum dhcp_status dhcp_status = wifi_station_dhcpc_status();
if (!manual_ip.has_value()) {
// Use DHCP client
if (dhcp_status != DHCP_STARTED) {
bool ret = wifi_station_dhcpc_start();
if (!ret) {
ESP_LOGV(TAG, "Starting DHCP client failed!");
}
return ret;
}
return true;
}
bool ret = true;
struct ip_info info {};
info.ip.addr = static_cast<uint32_t>(manual_ip->static_ip);
info.gw.addr = static_cast<uint32_t>(manual_ip->gateway);
info.netmask.addr = static_cast<uint32_t>(manual_ip->subnet);
if (dhcp_status == DHCP_STARTED) {
bool dhcp_stop_ret = wifi_station_dhcpc_stop();
if (!dhcp_stop_ret) {
ESP_LOGV(TAG, "Stopping DHCP client failed!");
ret = false;
}
}
bool wifi_set_info_ret = wifi_set_ip_info(STATION_IF, &info);
if (!wifi_set_info_ret) {
ESP_LOGV(TAG, "Setting manual IP info failed!");
ret = false;
}
ip_addr_t dns;
if (uint32_t(manual_ip->dns1) != 0) {
dns.addr = static_cast<uint32_t>(manual_ip->dns1);
dns_setserver(0, &dns);
}
if (uint32_t(manual_ip->dns2) != 0) {
dns.addr = static_cast<uint32_t>(manual_ip->dns2);
dns_setserver(1, &dns);
}
return ret;
}
IPAddress WiFiComponent::wifi_sta_ip_() {
if (!this->has_sta())
return {};
struct ip_info ip {};
wifi_get_ip_info(STATION_IF, &ip);
return {ip.ip.addr};
}
bool WiFiComponent::wifi_apply_hostname_() {
bool ret = wifi_station_set_hostname(const_cast<char *>(App.get_name().c_str()));
if (!ret) {
ESP_LOGV(TAG, "Setting WiFi Hostname failed!");
}
return ret;
}
bool WiFiComponent::wifi_sta_connect_(WiFiAP ap) {
// enable STA
if (!this->wifi_mode_(true, {}))
return false;
this->wifi_disconnect_();
struct station_config conf {};
memset(&conf, 0, sizeof(conf));
strcpy(reinterpret_cast<char *>(conf.ssid), ap.get_ssid().c_str());
strcpy(reinterpret_cast<char *>(conf.password), ap.get_password().c_str());
if (ap.get_bssid().has_value()) {
conf.bssid_set = 1;
memcpy(conf.bssid, ap.get_bssid()->data(), 6);
} else {
conf.bssid_set = 0;
}
#ifndef ARDUINO_ESP8266_RELEASE_2_3_0
if (ap.get_password().empty()) {
conf.threshold.authmode = AUTH_OPEN;
} else {
conf.threshold.authmode = AUTH_WPA_PSK;
}
conf.threshold.rssi = -127;
#endif
ETS_UART_INTR_DISABLE();
bool ret = wifi_station_set_config_current(&conf);
ETS_UART_INTR_ENABLE();
if (!ret) {
ESP_LOGV(TAG, "Setting WiFi Station config failed!");
return false;
}
if (!this->wifi_sta_ip_config_(ap.get_manual_ip())) {
return false;
}
this->wifi_apply_hostname_();
ETS_UART_INTR_DISABLE();
ret = wifi_station_connect();
ETS_UART_INTR_ENABLE();
if (!ret) {
ESP_LOGV(TAG, "wifi_station_connect failed!");
return false;
}
if (ap.get_channel().has_value()) {
ret = wifi_set_channel(*ap.get_channel());
if (!ret) {
ESP_LOGV(TAG, "wifi_set_channel failed!");
return false;
}
}
return true;
}
class WiFiMockClass : public ESP8266WiFiGenericClass {
public:
static void _event_callback(void *event) { ESP8266WiFiGenericClass::_eventCallback(event); } // NOLINT
};
const char *get_auth_mode_str(uint8_t mode) {
switch (mode) {
case AUTH_OPEN:
return "OPEN";
case AUTH_WEP:
return "WEP";
case AUTH_WPA_PSK:
return "WPA PSK";
case AUTH_WPA2_PSK:
return "WPA2 PSK";
case AUTH_WPA_WPA2_PSK:
return "WPA/WPA2 PSK";
default:
return "UNKNOWN";
}
}
#ifdef ipv4_addr
std::string format_ip_addr(struct ipv4_addr ip) {
char buf[20];
sprintf(buf, "%u.%u.%u.%u", uint8_t(ip.addr >> 0), uint8_t(ip.addr >> 8), uint8_t(ip.addr >> 16),
uint8_t(ip.addr >> 24));
return buf;
}
#else
std::string format_ip_addr(struct ip_addr ip) {
char buf[20];
sprintf(buf, "%u.%u.%u.%u", uint8_t(ip.addr >> 0), uint8_t(ip.addr >> 8), uint8_t(ip.addr >> 16),
uint8_t(ip.addr >> 24));
return buf;
}
#endif
const char *get_op_mode_str(uint8_t mode) {
switch (mode) {
case WIFI_OFF:
return "OFF";
case WIFI_STA:
return "STA";
case WIFI_AP:
return "AP";
case WIFI_AP_STA:
return "AP+STA";
default:
return "UNKNOWN";
}
}
const char *get_disconnect_reason_str(uint8_t reason) {
switch (reason) {
case REASON_AUTH_EXPIRE:
return "Auth Expired";
case REASON_AUTH_LEAVE:
return "Auth Leave";
case REASON_ASSOC_EXPIRE:
return "Association Expired";
case REASON_ASSOC_TOOMANY:
return "Too Many Associations";
case REASON_NOT_AUTHED:
return "Not Authenticated";
case REASON_NOT_ASSOCED:
return "Not Associated";
case REASON_ASSOC_LEAVE:
return "Association Leave";
case REASON_ASSOC_NOT_AUTHED:
return "Association not Authenticated";
case REASON_DISASSOC_PWRCAP_BAD:
return "Disassociate Power Cap Bad";
case REASON_DISASSOC_SUPCHAN_BAD:
return "Disassociate Supported Channel Bad";
case REASON_IE_INVALID:
return "IE Invalid";
case REASON_MIC_FAILURE:
return "Mic Failure";
case REASON_4WAY_HANDSHAKE_TIMEOUT:
return "4-Way Handshake Timeout";
case REASON_GROUP_KEY_UPDATE_TIMEOUT:
return "Group Key Update Timeout";
case REASON_IE_IN_4WAY_DIFFERS:
return "IE In 4-Way Handshake Differs";
case REASON_GROUP_CIPHER_INVALID:
return "Group Cipher Invalid";
case REASON_PAIRWISE_CIPHER_INVALID:
return "Pairwise Cipher Invalid";
case REASON_AKMP_INVALID:
return "AKMP Invalid";
case REASON_UNSUPP_RSN_IE_VERSION:
return "Unsupported RSN IE version";
case REASON_INVALID_RSN_IE_CAP:
return "Invalid RSN IE Cap";
case REASON_802_1X_AUTH_FAILED:
return "802.1x Authentication Failed";
case REASON_CIPHER_SUITE_REJECTED:
return "Cipher Suite Rejected";
case REASON_BEACON_TIMEOUT:
return "Beacon Timeout";
case REASON_NO_AP_FOUND:
return "AP Not Found";
case REASON_AUTH_FAIL:
return "Authentication Failed";
case REASON_ASSOC_FAIL:
return "Association Failed";
case REASON_HANDSHAKE_TIMEOUT:
return "Handshake Failed";
case REASON_UNSPECIFIED:
default:
return "Unspecified";
}
}
void WiFiComponent::wifi_event_callback(System_Event_t *event) {
switch (event->event) {
case EVENT_STAMODE_CONNECTED: {
auto it = event->event_info.connected;
char buf[33];
memcpy(buf, it.ssid, it.ssid_len);
buf[it.ssid_len] = '\0';
ESP_LOGV(TAG, "Event: Connected ssid='%s' bssid=%s channel=%u", buf, format_mac_addr(it.bssid).c_str(),
it.channel);
break;
}
case EVENT_STAMODE_DISCONNECTED: {
auto it = event->event_info.disconnected;
char buf[33];
memcpy(buf, it.ssid, it.ssid_len);
buf[it.ssid_len] = '\0';
ESP_LOGW(TAG, "Event: Disconnected ssid='%s' bssid=%s reason='%s'", buf, format_mac_addr(it.bssid).c_str(),
get_disconnect_reason_str(it.reason));
break;
}
case EVENT_STAMODE_AUTHMODE_CHANGE: {
auto it = event->event_info.auth_change;
ESP_LOGV(TAG, "Event: Changed AuthMode old=%s new=%s", get_auth_mode_str(it.old_mode),
get_auth_mode_str(it.new_mode));
break;
}
case EVENT_STAMODE_GOT_IP: {
auto it = event->event_info.got_ip;
ESP_LOGV(TAG, "Event: Got IP static_ip=%s gateway=%s netmask=%s", format_ip_addr(it.ip).c_str(),
format_ip_addr(it.gw).c_str(), format_ip_addr(it.mask).c_str());
break;
}
case EVENT_STAMODE_DHCP_TIMEOUT: {
ESP_LOGW(TAG, "Event: Getting IP address timeout");
break;
}
case EVENT_SOFTAPMODE_STACONNECTED: {
auto it = event->event_info.sta_connected;
ESP_LOGV(TAG, "Event: AP client connected MAC=%s aid=%u", format_mac_addr(it.mac).c_str(), it.aid);
break;
}
case EVENT_SOFTAPMODE_STADISCONNECTED: {
auto it = event->event_info.sta_disconnected;
ESP_LOGV(TAG, "Event: AP client disconnected MAC=%s aid=%u", format_mac_addr(it.mac).c_str(), it.aid);
break;
}
case EVENT_SOFTAPMODE_PROBEREQRECVED: {
auto it = event->event_info.ap_probereqrecved;
ESP_LOGVV(TAG, "Event: AP receive Probe Request MAC=%s RSSI=%d", format_mac_addr(it.mac).c_str(), it.rssi);
break;
}
#ifndef ARDUINO_ESP8266_RELEASE_2_3_0
case EVENT_OPMODE_CHANGED: {
auto it = event->event_info.opmode_changed;
ESP_LOGV(TAG, "Event: Changed Mode old=%s new=%s", get_op_mode_str(it.old_opmode),
get_op_mode_str(it.new_opmode));
break;
}
case EVENT_SOFTAPMODE_DISTRIBUTE_STA_IP: {
auto it = event->event_info.distribute_sta_ip;
ESP_LOGV(TAG, "Event: AP Distribute Station IP MAC=%s IP=%s aid=%u", format_mac_addr(it.mac).c_str(),
format_ip_addr(it.ip).c_str(), it.aid);
break;
}
#endif
default:
break;
}
if (event->event == EVENT_STAMODE_DISCONNECTED) {
global_wifi_component->error_from_callback_ = true;
}
WiFiMockClass::_event_callback(event);
}
bool WiFiComponent::wifi_sta_pre_setup_() {
if (!this->wifi_mode_(true, {}))
return false;
// Clear saved STA config
station_config default_config{};
wifi_station_get_config_default(&default_config);
bool is_zero = default_config.ssid[0] == '\0' && default_config.password[0] == '\0' && default_config.bssid[0] == 0 &&
default_config.bssid_set == 0;
if (!is_zero) {
ESP_LOGV(TAG, "Clearing default wifi STA config");
memset(&default_config, 0, sizeof(default_config));
ETS_UART_INTR_DISABLE();
bool ret = wifi_station_set_config(&default_config);
ETS_UART_INTR_ENABLE();
if (!ret) {
ESP_LOGW(TAG, "Clearing default wif STA config failed!");
}
}
bool ret1, ret2;
ETS_UART_INTR_DISABLE();
ret1 = wifi_station_set_auto_connect(0);
ret2 = wifi_station_set_reconnect_policy(false);
ETS_UART_INTR_ENABLE();
if (!ret1 || !ret2) {
ESP_LOGV(TAG, "Disabling Auto-Connect failed!");
}
delay(10);
return true;
}
void WiFiComponent::wifi_pre_setup_() {
wifi_set_event_handler_cb(&WiFiComponent::wifi_event_callback);
// Make sure the default opmode is OFF
uint8_t default_opmode = wifi_get_opmode_default();
if (default_opmode != 0) {
ESP_LOGV(TAG, "Setting default WiFi Mode to 0 (was %u)", default_opmode);
ETS_UART_INTR_DISABLE();
bool ret = wifi_set_opmode(0);
ETS_UART_INTR_ENABLE();
if (!ret) {
ESP_LOGW(TAG, "Setting default WiFi mode failed!");
}
}
// Make sure WiFi is in clean state before anything starts
this->wifi_mode_(false, false);
}
wl_status_t WiFiComponent::wifi_sta_status_() {
station_status_t status = wifi_station_get_connect_status();
switch (status) {
case STATION_GOT_IP:
return WL_CONNECTED;
case STATION_NO_AP_FOUND:
return WL_NO_SSID_AVAIL;
case STATION_CONNECT_FAIL:
case STATION_WRONG_PASSWORD:
return WL_CONNECT_FAILED;
case STATION_IDLE:
return WL_IDLE_STATUS;
case STATION_CONNECTING:
default:
return WL_DISCONNECTED;
}
}
bool WiFiComponent::wifi_scan_start_() {
static bool FIRST_SCAN = false;
// enable STA
if (!this->wifi_mode_(true, {}))
return false;
struct scan_config config {};
memset(&config, 0, sizeof(config));
config.ssid = nullptr;
config.bssid = nullptr;
config.channel = 0;
config.show_hidden = 1;
#ifndef ARDUINO_ESP8266_RELEASE_2_3_0
config.scan_type = WIFI_SCAN_TYPE_ACTIVE;
if (FIRST_SCAN) {
config.scan_time.active.min = 100;
config.scan_time.active.max = 200;
} else {
config.scan_time.active.min = 400;
config.scan_time.active.max = 500;
}
#endif
FIRST_SCAN = false;
bool ret = wifi_station_scan(&config, &WiFiComponent::s_wifi_scan_done_callback);
if (!ret) {
ESP_LOGV(TAG, "wifi_station_scan failed!");
return false;
}
return ret;
}
bool WiFiComponent::wifi_disconnect_() {
station_config conf{};
memset(&conf, 0, sizeof(conf));
ETS_UART_INTR_DISABLE();
wifi_station_set_config(&conf);
bool ret = wifi_station_disconnect();
ETS_UART_INTR_ENABLE();
return ret;
}
void WiFiComponent::s_wifi_scan_done_callback(void *arg, STATUS status) {
global_wifi_component->wifi_scan_done_callback_(arg, status);
}
void WiFiComponent::wifi_scan_done_callback_(void *arg, STATUS status) {
this->scan_result_.clear();
if (status != OK) {
ESP_LOGV(TAG, "Scan failed! %d", status);
this->retry_connect();
return;
}
auto *head = reinterpret_cast<bss_info *>(arg);
for (bss_info *it = head; it != nullptr; it = STAILQ_NEXT(it, next)) {
WiFiScanResult res({it->bssid[0], it->bssid[1], it->bssid[2], it->bssid[3], it->bssid[4], it->bssid[5]},
std::string(reinterpret_cast<char *>(it->ssid), it->ssid_len), it->channel, it->rssi,
it->authmode != AUTH_OPEN, it->is_hidden != 0);
this->scan_result_.push_back(res);
}
this->scan_done_ = true;
}
bool WiFiComponent::wifi_ap_ip_config_(optional<ManualIP> manual_ip) {
// enable AP
if (!this->wifi_mode_({}, true))
return false;
struct ip_info info {};
if (manual_ip.has_value()) {
info.ip.addr = static_cast<uint32_t>(manual_ip->static_ip);
info.gw.addr = static_cast<uint32_t>(manual_ip->gateway);
info.netmask.addr = static_cast<uint32_t>(manual_ip->subnet);
} else {
info.ip.addr = static_cast<uint32_t>(IPAddress(192, 168, 4, 1));
info.gw.addr = static_cast<uint32_t>(IPAddress(192, 168, 4, 1));
info.netmask.addr = static_cast<uint32_t>(IPAddress(255, 255, 255, 0));
}
if (wifi_softap_dhcps_status() == DHCP_STARTED) {
if (!wifi_softap_dhcps_stop()) {
ESP_LOGV(TAG, "Stopping DHCP server failed!");
}
}
if (!wifi_set_ip_info(SOFTAP_IF, &info)) {
ESP_LOGV(TAG, "Setting SoftAP info failed!");
return false;
}
struct dhcps_lease lease {};
IPAddress start_address = info.ip.addr;
start_address[3] += 99;
lease.start_ip.addr = static_cast<uint32_t>(start_address);
ESP_LOGV(TAG, "DHCP server IP lease start: %s", start_address.toString().c_str());
start_address[3] += 100;
lease.end_ip.addr = static_cast<uint32_t>(start_address);
ESP_LOGV(TAG, "DHCP server IP lease end: %s", start_address.toString().c_str());
if (!wifi_softap_set_dhcps_lease(&lease)) {
ESP_LOGV(TAG, "Setting SoftAP DHCP lease failed!");
return false;
}
// lease time 1440 minutes (=24 hours)
if (!wifi_softap_set_dhcps_lease_time(1440)) {
ESP_LOGV(TAG, "Setting SoftAP DHCP lease time failed!");
return false;
}
uint8_t mode = 1;
// bit0, 1 enables router information from ESP8266 SoftAP DHCP server.
if (!wifi_softap_set_dhcps_offer_option(OFFER_ROUTER, &mode)) {
ESP_LOGV(TAG, "wifi_softap_set_dhcps_offer_option failed!");
return false;
}
if (!wifi_softap_dhcps_start()) {
ESP_LOGV(TAG, "Starting SoftAP DHCPS failed!");
return false;
}
return true;
}
bool WiFiComponent::wifi_start_ap_(const WiFiAP &ap) {
// enable AP
if (!this->wifi_mode_({}, true))
return false;
struct softap_config conf {};
strcpy(reinterpret_cast<char *>(conf.ssid), ap.get_ssid().c_str());
conf.ssid_len = static_cast<uint8>(ap.get_ssid().size());
conf.channel = ap.get_channel().value_or(1);
conf.ssid_hidden = 0;
conf.max_connection = 5;
conf.beacon_interval = 100;
if (ap.get_password().empty()) {
conf.authmode = AUTH_OPEN;
*conf.password = 0;
} else {
conf.authmode = AUTH_WPA2_PSK;
strcpy(reinterpret_cast<char *>(conf.password), ap.get_password().c_str());
}
ETS_UART_INTR_DISABLE();
bool ret = wifi_softap_set_config_current(&conf);
ETS_UART_INTR_ENABLE();
if (!ret) {
ESP_LOGV(TAG, "wifi_softap_set_config_current failed!");
return false;
}
if (!this->wifi_ap_ip_config_(ap.get_manual_ip())) {
ESP_LOGV(TAG, "wifi_ap_ip_config_ failed!");
return false;
}
return true;
}
IPAddress WiFiComponent::wifi_soft_ap_ip() {
struct ip_info ip {};
wifi_get_ip_info(SOFTAP_IF, &ip);
return {ip.ip.addr};
}
} // namespace wifi
} // namespace esphome
#endif