mirror of
https://github.com/esphome/esphome.git
synced 2025-09-12 16:22:22 +01:00
Co-authored-by: Jesse Hills <3060199+jesserockz@users.noreply.github.com> Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>
568 lines
22 KiB
C++
568 lines
22 KiB
C++
#include "bme680_bsec.h"
|
|
#include "esphome/core/helpers.h"
|
|
#include "esphome/core/log.h"
|
|
#include <string>
|
|
|
|
namespace esphome {
|
|
namespace bme680_bsec {
|
|
#ifdef USE_BSEC
|
|
static const char *const TAG = "bme680_bsec.sensor";
|
|
|
|
static const std::string IAQ_ACCURACY_STATES[4] = {"Stabilizing", "Uncertain", "Calibrating", "Calibrated"};
|
|
|
|
std::vector<BME680BSECComponent *>
|
|
BME680BSECComponent::instances; // NOLINT(cppcoreguidelines-avoid-non-const-global-variables)
|
|
uint8_t BME680BSECComponent::work_buffer_[BSEC_MAX_WORKBUFFER_SIZE] = {0};
|
|
|
|
void BME680BSECComponent::setup() {
|
|
ESP_LOGCONFIG(TAG, "Running setup for '%s'", this->device_id_.c_str());
|
|
|
|
uint8_t new_idx = BME680BSECComponent::instances.size();
|
|
BME680BSECComponent::instances.push_back(this);
|
|
|
|
this->bsec_state_data_valid_ = false;
|
|
|
|
// Initialize the bme680_ structure (passed-in to the bme680_* functions) and the BME680 device
|
|
this->bme680_.dev_id =
|
|
new_idx; // This is a "Place holder to store the id of the device structure" (see bme680_defs.h).
|
|
// This will be passed-in as first parameter to the next "read" and "write" function pointers.
|
|
// We currently use the index of the object in the BME680BSECComponent::instances vector to identify
|
|
// the different devices in the system.
|
|
this->bme680_.intf = BME680_I2C_INTF;
|
|
this->bme680_.read = BME680BSECComponent::read_bytes_wrapper;
|
|
this->bme680_.write = BME680BSECComponent::write_bytes_wrapper;
|
|
this->bme680_.delay_ms = BME680BSECComponent::delay_ms;
|
|
this->bme680_.amb_temp = 25;
|
|
|
|
this->bme680_status_ = bme680_init(&this->bme680_);
|
|
if (this->bme680_status_ != BME680_OK) {
|
|
this->mark_failed();
|
|
return;
|
|
}
|
|
|
|
// Initialize the BSEC library
|
|
if (this->reinit_bsec_lib_() != 0) {
|
|
this->mark_failed();
|
|
return;
|
|
}
|
|
|
|
// Load the BSEC library state from storage
|
|
this->load_state_();
|
|
}
|
|
|
|
void BME680BSECComponent::set_config_() {
|
|
if (this->sample_rate_ == SAMPLE_RATE_ULP) {
|
|
if (this->supply_voltage_ == SUPPLY_VOLTAGE_3V3) {
|
|
const uint8_t config[] = {
|
|
#include "config/generic_33v_300s_28d/bsec_iaq.txt"
|
|
};
|
|
this->bsec_status_ =
|
|
bsec_set_configuration(config, BSEC_MAX_PROPERTY_BLOB_SIZE, this->work_buffer_, sizeof(this->work_buffer_));
|
|
} else { // SUPPLY_VOLTAGE_1V8
|
|
const uint8_t config[] = {
|
|
#include "config/generic_18v_300s_28d/bsec_iaq.txt"
|
|
};
|
|
this->bsec_status_ =
|
|
bsec_set_configuration(config, BSEC_MAX_PROPERTY_BLOB_SIZE, this->work_buffer_, sizeof(this->work_buffer_));
|
|
}
|
|
} else { // SAMPLE_RATE_LP
|
|
if (this->supply_voltage_ == SUPPLY_VOLTAGE_3V3) {
|
|
const uint8_t config[] = {
|
|
#include "config/generic_33v_3s_28d/bsec_iaq.txt"
|
|
};
|
|
this->bsec_status_ =
|
|
bsec_set_configuration(config, BSEC_MAX_PROPERTY_BLOB_SIZE, this->work_buffer_, sizeof(this->work_buffer_));
|
|
} else { // SUPPLY_VOLTAGE_1V8
|
|
const uint8_t config[] = {
|
|
#include "config/generic_18v_3s_28d/bsec_iaq.txt"
|
|
};
|
|
this->bsec_status_ =
|
|
bsec_set_configuration(config, BSEC_MAX_PROPERTY_BLOB_SIZE, this->work_buffer_, sizeof(this->work_buffer_));
|
|
}
|
|
}
|
|
}
|
|
|
|
float BME680BSECComponent::calc_sensor_sample_rate_(SampleRate sample_rate) {
|
|
if (sample_rate == SAMPLE_RATE_DEFAULT) {
|
|
sample_rate = this->sample_rate_;
|
|
}
|
|
return sample_rate == SAMPLE_RATE_ULP ? BSEC_SAMPLE_RATE_ULP : BSEC_SAMPLE_RATE_LP;
|
|
}
|
|
|
|
void BME680BSECComponent::update_subscription_() {
|
|
bsec_sensor_configuration_t virtual_sensors[BSEC_NUMBER_OUTPUTS];
|
|
int num_virtual_sensors = 0;
|
|
|
|
if (this->iaq_sensor_) {
|
|
virtual_sensors[num_virtual_sensors].sensor_id =
|
|
this->iaq_mode_ == IAQ_MODE_STATIC ? BSEC_OUTPUT_STATIC_IAQ : BSEC_OUTPUT_IAQ;
|
|
virtual_sensors[num_virtual_sensors].sample_rate = this->calc_sensor_sample_rate_(SAMPLE_RATE_DEFAULT);
|
|
num_virtual_sensors++;
|
|
}
|
|
|
|
if (this->co2_equivalent_sensor_) {
|
|
virtual_sensors[num_virtual_sensors].sensor_id = BSEC_OUTPUT_CO2_EQUIVALENT;
|
|
virtual_sensors[num_virtual_sensors].sample_rate = this->calc_sensor_sample_rate_(SAMPLE_RATE_DEFAULT);
|
|
num_virtual_sensors++;
|
|
}
|
|
|
|
if (this->breath_voc_equivalent_sensor_) {
|
|
virtual_sensors[num_virtual_sensors].sensor_id = BSEC_OUTPUT_BREATH_VOC_EQUIVALENT;
|
|
virtual_sensors[num_virtual_sensors].sample_rate = this->calc_sensor_sample_rate_(SAMPLE_RATE_DEFAULT);
|
|
num_virtual_sensors++;
|
|
}
|
|
|
|
if (this->pressure_sensor_) {
|
|
virtual_sensors[num_virtual_sensors].sensor_id = BSEC_OUTPUT_RAW_PRESSURE;
|
|
virtual_sensors[num_virtual_sensors].sample_rate = this->calc_sensor_sample_rate_(this->pressure_sample_rate_);
|
|
num_virtual_sensors++;
|
|
}
|
|
|
|
if (this->gas_resistance_sensor_) {
|
|
virtual_sensors[num_virtual_sensors].sensor_id = BSEC_OUTPUT_RAW_GAS;
|
|
virtual_sensors[num_virtual_sensors].sample_rate = this->calc_sensor_sample_rate_(SAMPLE_RATE_DEFAULT);
|
|
num_virtual_sensors++;
|
|
}
|
|
|
|
if (this->temperature_sensor_) {
|
|
virtual_sensors[num_virtual_sensors].sensor_id = BSEC_OUTPUT_SENSOR_HEAT_COMPENSATED_TEMPERATURE;
|
|
virtual_sensors[num_virtual_sensors].sample_rate = this->calc_sensor_sample_rate_(this->temperature_sample_rate_);
|
|
num_virtual_sensors++;
|
|
}
|
|
|
|
if (this->humidity_sensor_) {
|
|
virtual_sensors[num_virtual_sensors].sensor_id = BSEC_OUTPUT_SENSOR_HEAT_COMPENSATED_HUMIDITY;
|
|
virtual_sensors[num_virtual_sensors].sample_rate = this->calc_sensor_sample_rate_(this->humidity_sample_rate_);
|
|
num_virtual_sensors++;
|
|
}
|
|
|
|
bsec_sensor_configuration_t sensor_settings[BSEC_MAX_PHYSICAL_SENSOR];
|
|
uint8_t num_sensor_settings = BSEC_MAX_PHYSICAL_SENSOR;
|
|
this->bsec_status_ =
|
|
bsec_update_subscription(virtual_sensors, num_virtual_sensors, sensor_settings, &num_sensor_settings);
|
|
ESP_LOGV(TAG, "%s: updating subscription for %d virtual sensors (out=%d sensors)", this->device_id_.c_str(),
|
|
num_virtual_sensors, num_sensor_settings);
|
|
}
|
|
|
|
void BME680BSECComponent::dump_config() {
|
|
ESP_LOGCONFIG(TAG, "%s via BSEC:", this->device_id_.c_str());
|
|
|
|
bsec_version_t version;
|
|
bsec_get_version(&version);
|
|
ESP_LOGCONFIG(TAG, " BSEC Version: %d.%d.%d.%d", version.major, version.minor, version.major_bugfix,
|
|
version.minor_bugfix);
|
|
|
|
LOG_I2C_DEVICE(this);
|
|
|
|
if (this->is_failed()) {
|
|
ESP_LOGE(TAG, "Communication failed (BSEC Status: %d, BME680 Status: %d)", this->bsec_status_,
|
|
this->bme680_status_);
|
|
}
|
|
|
|
ESP_LOGCONFIG(TAG,
|
|
" Temperature Offset: %.2f\n"
|
|
" IAQ Mode: %s\n"
|
|
" Supply Voltage: %sV\n"
|
|
" Sample Rate: %s\n"
|
|
" State Save Interval: %ims",
|
|
this->temperature_offset_, this->iaq_mode_ == IAQ_MODE_STATIC ? "Static" : "Mobile",
|
|
this->supply_voltage_ == SUPPLY_VOLTAGE_3V3 ? "3.3" : "1.8",
|
|
BME680_BSEC_SAMPLE_RATE_LOG(this->sample_rate_), this->state_save_interval_ms_);
|
|
|
|
LOG_SENSOR(" ", "Temperature", this->temperature_sensor_);
|
|
ESP_LOGCONFIG(TAG, " Sample Rate: %s", BME680_BSEC_SAMPLE_RATE_LOG(this->temperature_sample_rate_));
|
|
LOG_SENSOR(" ", "Pressure", this->pressure_sensor_);
|
|
ESP_LOGCONFIG(TAG, " Sample Rate: %s", BME680_BSEC_SAMPLE_RATE_LOG(this->pressure_sample_rate_));
|
|
LOG_SENSOR(" ", "Humidity", this->humidity_sensor_);
|
|
ESP_LOGCONFIG(TAG, " Sample Rate: %s", BME680_BSEC_SAMPLE_RATE_LOG(this->humidity_sample_rate_));
|
|
LOG_SENSOR(" ", "Gas Resistance", this->gas_resistance_sensor_);
|
|
LOG_SENSOR(" ", "IAQ", this->iaq_sensor_);
|
|
LOG_SENSOR(" ", "Numeric IAQ Accuracy", this->iaq_accuracy_sensor_);
|
|
LOG_TEXT_SENSOR(" ", "IAQ Accuracy", this->iaq_accuracy_text_sensor_);
|
|
LOG_SENSOR(" ", "CO2 Equivalent", this->co2_equivalent_sensor_);
|
|
LOG_SENSOR(" ", "Breath VOC Equivalent", this->breath_voc_equivalent_sensor_);
|
|
}
|
|
|
|
float BME680BSECComponent::get_setup_priority() const { return setup_priority::DATA; }
|
|
|
|
void BME680BSECComponent::loop() {
|
|
this->run_();
|
|
|
|
if (this->bsec_status_ < BSEC_OK || this->bme680_status_ < BME680_OK) {
|
|
this->status_set_error();
|
|
} else {
|
|
this->status_clear_error();
|
|
}
|
|
if (this->bsec_status_ > BSEC_OK || this->bme680_status_ > BME680_OK) {
|
|
this->status_set_warning();
|
|
} else {
|
|
this->status_clear_warning();
|
|
}
|
|
|
|
// Process a single action from the queue. These are primarily sensor state publishes
|
|
// that in totality take too long to send in a single call.
|
|
if (this->queue_.size()) {
|
|
auto action = std::move(this->queue_.front());
|
|
this->queue_.pop();
|
|
action();
|
|
}
|
|
}
|
|
|
|
void BME680BSECComponent::run_() {
|
|
int64_t curr_time_ns = this->get_time_ns_();
|
|
if (curr_time_ns < this->next_call_ns_) {
|
|
return;
|
|
}
|
|
|
|
ESP_LOGV(TAG, "%s: Performing sensor run", this->device_id_.c_str());
|
|
|
|
// Restore BSEC library state
|
|
// The reinit_bsec_lib_ method is computationally expensive: it takes 1200÷2900 microseconds on a ESP32.
|
|
// It can be skipped entirely when there is only one device (since the BSEC library won't be shared)
|
|
if (BME680BSECComponent::instances.size() > 1) {
|
|
int res = this->reinit_bsec_lib_();
|
|
if (res != 0)
|
|
return;
|
|
}
|
|
|
|
this->bsec_status_ = bsec_sensor_control(curr_time_ns, &this->bme680_settings_);
|
|
if (this->bsec_status_ < BSEC_OK) {
|
|
ESP_LOGW(TAG, "Failed to fetch sensor control settings (BSEC Error Code %d)", this->bsec_status_);
|
|
return;
|
|
}
|
|
this->next_call_ns_ = this->bme680_settings_.next_call;
|
|
|
|
if (this->bme680_settings_.trigger_measurement) {
|
|
this->bme680_.tph_sett.os_temp = this->bme680_settings_.temperature_oversampling;
|
|
this->bme680_.tph_sett.os_pres = this->bme680_settings_.pressure_oversampling;
|
|
this->bme680_.tph_sett.os_hum = this->bme680_settings_.humidity_oversampling;
|
|
this->bme680_.gas_sett.run_gas = this->bme680_settings_.run_gas;
|
|
this->bme680_.gas_sett.heatr_temp = this->bme680_settings_.heater_temperature;
|
|
this->bme680_.gas_sett.heatr_dur = this->bme680_settings_.heating_duration;
|
|
this->bme680_.power_mode = BME680_FORCED_MODE;
|
|
uint16_t desired_settings = BME680_OST_SEL | BME680_OSP_SEL | BME680_OSH_SEL | BME680_GAS_SENSOR_SEL;
|
|
this->bme680_status_ = bme680_set_sensor_settings(desired_settings, &this->bme680_);
|
|
if (this->bme680_status_ != BME680_OK) {
|
|
ESP_LOGW(TAG, "Failed to set sensor settings (BME680 Error Code %d)", this->bme680_status_);
|
|
return;
|
|
}
|
|
|
|
this->bme680_status_ = bme680_set_sensor_mode(&this->bme680_);
|
|
if (this->bme680_status_ != BME680_OK) {
|
|
ESP_LOGW(TAG, "Failed to set sensor mode (BME680 Error Code %d)", this->bme680_status_);
|
|
return;
|
|
}
|
|
|
|
uint16_t meas_dur = 0;
|
|
bme680_get_profile_dur(&meas_dur, &this->bme680_);
|
|
|
|
// Since we are about to go "out of scope" in the loop, take a snapshot of the state now so we can restore it later
|
|
// TODO: it would be interesting to see if this is really needed here, or if it's needed only after each
|
|
// bsec_do_steps() call
|
|
if (BME680BSECComponent::instances.size() > 1)
|
|
this->snapshot_state_();
|
|
|
|
ESP_LOGV(TAG, "Queueing read in %ums", meas_dur);
|
|
this->set_timeout("read", meas_dur, [this]() { this->read_(); });
|
|
} else {
|
|
ESP_LOGV(TAG, "Measurement not required");
|
|
this->read_();
|
|
}
|
|
}
|
|
|
|
void BME680BSECComponent::read_() {
|
|
ESP_LOGV(TAG, "%s: Reading data", this->device_id_.c_str());
|
|
int64_t curr_time_ns = this->get_time_ns_();
|
|
|
|
if (this->bme680_settings_.trigger_measurement) {
|
|
while (this->bme680_.power_mode != BME680_SLEEP_MODE) {
|
|
this->bme680_status_ = bme680_get_sensor_mode(&this->bme680_);
|
|
if (this->bme680_status_ != BME680_OK) {
|
|
ESP_LOGW(TAG, "Failed to get sensor mode (BME680 Error Code %d)", this->bme680_status_);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!this->bme680_settings_.process_data) {
|
|
ESP_LOGV(TAG, "Data processing not required");
|
|
return;
|
|
}
|
|
|
|
struct bme680_field_data data;
|
|
this->bme680_status_ = bme680_get_sensor_data(&data, &this->bme680_);
|
|
|
|
if (this->bme680_status_ != BME680_OK) {
|
|
ESP_LOGW(TAG, "Failed to get sensor data (BME680 Error Code %d)", this->bme680_status_);
|
|
return;
|
|
}
|
|
if (!(data.status & BME680_NEW_DATA_MSK)) {
|
|
ESP_LOGD(TAG, "BME680 did not report new data");
|
|
return;
|
|
}
|
|
|
|
bsec_input_t inputs[BSEC_MAX_PHYSICAL_SENSOR]; // Temperature, Pressure, Humidity & Gas Resistance
|
|
uint8_t num_inputs = 0;
|
|
|
|
if (this->bme680_settings_.process_data & BSEC_PROCESS_TEMPERATURE) {
|
|
inputs[num_inputs].sensor_id = BSEC_INPUT_TEMPERATURE;
|
|
inputs[num_inputs].signal = data.temperature / 100.0f;
|
|
inputs[num_inputs].time_stamp = curr_time_ns;
|
|
num_inputs++;
|
|
|
|
// Temperature offset from the real temperature due to external heat sources
|
|
inputs[num_inputs].sensor_id = BSEC_INPUT_HEATSOURCE;
|
|
inputs[num_inputs].signal = this->temperature_offset_;
|
|
inputs[num_inputs].time_stamp = curr_time_ns;
|
|
num_inputs++;
|
|
}
|
|
if (this->bme680_settings_.process_data & BSEC_PROCESS_HUMIDITY) {
|
|
inputs[num_inputs].sensor_id = BSEC_INPUT_HUMIDITY;
|
|
inputs[num_inputs].signal = data.humidity / 1000.0f;
|
|
inputs[num_inputs].time_stamp = curr_time_ns;
|
|
num_inputs++;
|
|
}
|
|
if (this->bme680_settings_.process_data & BSEC_PROCESS_PRESSURE) {
|
|
inputs[num_inputs].sensor_id = BSEC_INPUT_PRESSURE;
|
|
inputs[num_inputs].signal = data.pressure;
|
|
inputs[num_inputs].time_stamp = curr_time_ns;
|
|
num_inputs++;
|
|
}
|
|
if (this->bme680_settings_.process_data & BSEC_PROCESS_GAS) {
|
|
if (data.status & BME680_GASM_VALID_MSK) {
|
|
inputs[num_inputs].sensor_id = BSEC_INPUT_GASRESISTOR;
|
|
inputs[num_inputs].signal = data.gas_resistance;
|
|
inputs[num_inputs].time_stamp = curr_time_ns;
|
|
num_inputs++;
|
|
} else {
|
|
ESP_LOGD(TAG, "BME680 did not report gas data");
|
|
}
|
|
}
|
|
if (num_inputs < 1) {
|
|
ESP_LOGD(TAG, "No signal inputs available for BSEC");
|
|
return;
|
|
}
|
|
|
|
// Restore BSEC library state
|
|
// The reinit_bsec_lib_ method is computationally expensive: it takes 1200÷2900 microseconds on a ESP32.
|
|
// It can be skipped entirely when there is only one device (since the BSEC library won't be shared)
|
|
if (BME680BSECComponent::instances.size() > 1) {
|
|
int res = this->reinit_bsec_lib_();
|
|
if (res != 0)
|
|
return;
|
|
// Now that the BSEC library has been re-initialized, bsec_sensor_control *NEEDS* to be called in order to support
|
|
// multiple devices with a different set of enabled sensors (even if the bme680_settings_ data is not used)
|
|
this->bsec_status_ = bsec_sensor_control(curr_time_ns, &this->bme680_settings_);
|
|
if (this->bsec_status_ < BSEC_OK) {
|
|
ESP_LOGW(TAG, "Failed to fetch sensor control settings (BSEC Error Code %d)", this->bsec_status_);
|
|
return;
|
|
}
|
|
}
|
|
|
|
bsec_output_t outputs[BSEC_NUMBER_OUTPUTS];
|
|
uint8_t num_outputs = BSEC_NUMBER_OUTPUTS;
|
|
this->bsec_status_ = bsec_do_steps(inputs, num_inputs, outputs, &num_outputs);
|
|
if (this->bsec_status_ != BSEC_OK) {
|
|
ESP_LOGW(TAG, "BSEC failed to process signals (BSEC Error Code %d)", this->bsec_status_);
|
|
return;
|
|
}
|
|
ESP_LOGV(TAG, "%s: after bsec_do_steps: num_inputs=%d num_outputs=%d", this->device_id_.c_str(), num_inputs,
|
|
num_outputs);
|
|
|
|
// Since we are about to go "out of scope" in the loop, take a snapshot of the state now so we can restore it later
|
|
if (BME680BSECComponent::instances.size() > 1)
|
|
this->snapshot_state_();
|
|
|
|
if (num_outputs < 1) {
|
|
ESP_LOGD(TAG, "No signal outputs provided by BSEC");
|
|
return;
|
|
}
|
|
|
|
this->publish_(outputs, num_outputs);
|
|
}
|
|
|
|
void BME680BSECComponent::publish_(const bsec_output_t *outputs, uint8_t num_outputs) {
|
|
ESP_LOGV(TAG, "%s: Queuing sensor state publish actions", this->device_id_.c_str());
|
|
for (uint8_t i = 0; i < num_outputs; i++) {
|
|
float signal = outputs[i].signal;
|
|
switch (outputs[i].sensor_id) {
|
|
case BSEC_OUTPUT_IAQ:
|
|
case BSEC_OUTPUT_STATIC_IAQ: {
|
|
uint8_t accuracy = outputs[i].accuracy;
|
|
this->queue_push_([this, signal]() { this->publish_sensor_(this->iaq_sensor_, signal); });
|
|
this->queue_push_([this, accuracy]() {
|
|
this->publish_sensor_(this->iaq_accuracy_text_sensor_, IAQ_ACCURACY_STATES[accuracy]);
|
|
});
|
|
this->queue_push_([this, accuracy]() { this->publish_sensor_(this->iaq_accuracy_sensor_, accuracy, true); });
|
|
|
|
// Queue up an opportunity to save state
|
|
this->queue_push_([this, accuracy]() { this->save_state_(accuracy); });
|
|
} break;
|
|
case BSEC_OUTPUT_CO2_EQUIVALENT:
|
|
this->queue_push_([this, signal]() { this->publish_sensor_(this->co2_equivalent_sensor_, signal); });
|
|
break;
|
|
case BSEC_OUTPUT_BREATH_VOC_EQUIVALENT:
|
|
this->queue_push_([this, signal]() { this->publish_sensor_(this->breath_voc_equivalent_sensor_, signal); });
|
|
break;
|
|
case BSEC_OUTPUT_RAW_PRESSURE:
|
|
this->queue_push_([this, signal]() { this->publish_sensor_(this->pressure_sensor_, signal / 100.0f); });
|
|
break;
|
|
case BSEC_OUTPUT_RAW_GAS:
|
|
this->queue_push_([this, signal]() { this->publish_sensor_(this->gas_resistance_sensor_, signal); });
|
|
break;
|
|
case BSEC_OUTPUT_SENSOR_HEAT_COMPENSATED_TEMPERATURE:
|
|
this->queue_push_([this, signal]() { this->publish_sensor_(this->temperature_sensor_, signal); });
|
|
break;
|
|
case BSEC_OUTPUT_SENSOR_HEAT_COMPENSATED_HUMIDITY:
|
|
this->queue_push_([this, signal]() { this->publish_sensor_(this->humidity_sensor_, signal); });
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
int64_t BME680BSECComponent::get_time_ns_() {
|
|
int64_t time_ms = millis();
|
|
if (this->last_time_ms_ > time_ms) {
|
|
this->millis_overflow_counter_++;
|
|
}
|
|
this->last_time_ms_ = time_ms;
|
|
|
|
return (time_ms + ((int64_t) this->millis_overflow_counter_ << 32)) * INT64_C(1000000);
|
|
}
|
|
|
|
void BME680BSECComponent::publish_sensor_(sensor::Sensor *sensor, float value, bool change_only) {
|
|
if (!sensor || (change_only && sensor->has_state() && sensor->state == value)) {
|
|
return;
|
|
}
|
|
sensor->publish_state(value);
|
|
}
|
|
|
|
void BME680BSECComponent::publish_sensor_(text_sensor::TextSensor *sensor, const std::string &value) {
|
|
if (!sensor || (sensor->has_state() && sensor->state == value)) {
|
|
return;
|
|
}
|
|
sensor->publish_state(value);
|
|
}
|
|
|
|
// Communication function - read
|
|
// First parameter is the "dev_id" member of our "bme680_" object, which is passed-back here as-is
|
|
int8_t BME680BSECComponent::read_bytes_wrapper(uint8_t devid, uint8_t a_register, uint8_t *data, uint16_t len) {
|
|
BME680BSECComponent *inst = instances[devid];
|
|
// Use the I2CDevice::read_bytes method to perform the actual I2C register read
|
|
return inst->read_bytes(a_register, data, len) ? 0 : -1;
|
|
}
|
|
|
|
// Communication function - write
|
|
// First parameter is the "dev_id" member of our "bme680_" object, which is passed-back here as-is
|
|
int8_t BME680BSECComponent::write_bytes_wrapper(uint8_t devid, uint8_t a_register, uint8_t *data, uint16_t len) {
|
|
BME680BSECComponent *inst = instances[devid];
|
|
// Use the I2CDevice::write_bytes method to perform the actual I2C register write
|
|
return inst->write_bytes(a_register, data, len) ? 0 : -1;
|
|
}
|
|
|
|
void BME680BSECComponent::delay_ms(uint32_t period) {
|
|
ESP_LOGV(TAG, "Delaying for %ums", period);
|
|
delay(period);
|
|
}
|
|
|
|
// Fetch the BSEC library state and save it in the bsec_state_data_ member (volatile memory)
|
|
// Used to share the library when using more than one sensor
|
|
void BME680BSECComponent::snapshot_state_() {
|
|
uint32_t num_serialized_state = BSEC_MAX_STATE_BLOB_SIZE;
|
|
this->bsec_status_ = bsec_get_state(0, this->bsec_state_data_, BSEC_MAX_STATE_BLOB_SIZE, this->work_buffer_,
|
|
sizeof(this->work_buffer_), &num_serialized_state);
|
|
if (this->bsec_status_ != BSEC_OK) {
|
|
ESP_LOGW(TAG, "%s: Failed to fetch BSEC library state for snapshot (BSEC Error Code %d)", this->device_id_.c_str(),
|
|
this->bsec_status_);
|
|
return;
|
|
}
|
|
this->bsec_state_data_valid_ = true;
|
|
}
|
|
|
|
// Restores the BSEC library state from a snapshot in memory
|
|
// Used to share the library when using more than one sensor
|
|
void BME680BSECComponent::restore_state_() {
|
|
if (!this->bsec_state_data_valid_) {
|
|
ESP_LOGV(TAG, "%s: BSEC state data NOT valid, aborting restore_state_()", this->device_id_.c_str());
|
|
return;
|
|
}
|
|
|
|
this->bsec_status_ =
|
|
bsec_set_state(this->bsec_state_data_, BSEC_MAX_STATE_BLOB_SIZE, this->work_buffer_, sizeof(this->work_buffer_));
|
|
if (this->bsec_status_ != BSEC_OK) {
|
|
ESP_LOGW(TAG, "Failed to restore BSEC library state (BSEC Error Code %d)", this->bsec_status_);
|
|
return;
|
|
}
|
|
}
|
|
|
|
int BME680BSECComponent::reinit_bsec_lib_() {
|
|
this->bsec_status_ = bsec_init();
|
|
if (this->bsec_status_ != BSEC_OK) {
|
|
this->mark_failed();
|
|
return -1;
|
|
}
|
|
|
|
this->set_config_();
|
|
if (this->bsec_status_ != BSEC_OK) {
|
|
this->mark_failed();
|
|
return -2;
|
|
}
|
|
|
|
this->restore_state_();
|
|
|
|
this->update_subscription_();
|
|
if (this->bsec_status_ != BSEC_OK) {
|
|
this->mark_failed();
|
|
return -3;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void BME680BSECComponent::load_state_() {
|
|
uint32_t hash = fnv1_hash("bme680_bsec_state_" + this->device_id_);
|
|
this->bsec_state_ = global_preferences->make_preference<uint8_t[BSEC_MAX_STATE_BLOB_SIZE]>(hash, true);
|
|
|
|
if (!this->bsec_state_.load(&this->bsec_state_data_)) {
|
|
// No saved BSEC library state available
|
|
return;
|
|
}
|
|
|
|
ESP_LOGV(TAG, "%s: Loading BSEC library state", this->device_id_.c_str());
|
|
this->bsec_status_ =
|
|
bsec_set_state(this->bsec_state_data_, BSEC_MAX_STATE_BLOB_SIZE, this->work_buffer_, sizeof(this->work_buffer_));
|
|
if (this->bsec_status_ != BSEC_OK) {
|
|
ESP_LOGW(TAG, "%s: Failed to load BSEC library state (BSEC Error Code %d)", this->device_id_.c_str(),
|
|
this->bsec_status_);
|
|
return;
|
|
}
|
|
// All OK: set the BSEC state data as valid
|
|
this->bsec_state_data_valid_ = true;
|
|
ESP_LOGI(TAG, "%s: Loaded BSEC library state", this->device_id_.c_str());
|
|
}
|
|
|
|
void BME680BSECComponent::save_state_(uint8_t accuracy) {
|
|
if (accuracy < 3 || (millis() - this->last_state_save_ms_ < this->state_save_interval_ms_)) {
|
|
return;
|
|
}
|
|
if (BME680BSECComponent::instances.size() <= 1) {
|
|
// When a single device is in use, no snapshot is taken regularly so one is taken now
|
|
// On multiple devices, a snapshot is taken at every loop, so there is no need to take one here
|
|
this->snapshot_state_();
|
|
}
|
|
if (!this->bsec_state_data_valid_)
|
|
return;
|
|
|
|
ESP_LOGV(TAG, "%s: Saving state", this->device_id_.c_str());
|
|
|
|
if (!this->bsec_state_.save(&this->bsec_state_data_)) {
|
|
ESP_LOGW(TAG, "Failed to save state");
|
|
return;
|
|
}
|
|
this->last_state_save_ms_ = millis();
|
|
|
|
ESP_LOGI(TAG, "Saved state");
|
|
}
|
|
#endif
|
|
} // namespace bme680_bsec
|
|
} // namespace esphome
|