1
0
mirror of https://github.com/esphome/esphome.git synced 2025-09-12 16:22:22 +01:00
Files
esphome/esphome/components/bme680_bsec/bme680_bsec.cpp
Thomas Rupprecht 487e1f871f use `encode_uintXX` (#8847)
Co-authored-by: Jesse Hills <3060199+jesserockz@users.noreply.github.com>
Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>
2025-06-11 17:06:45 +12:00

568 lines
22 KiB
C++

#include "bme680_bsec.h"
#include "esphome/core/helpers.h"
#include "esphome/core/log.h"
#include <string>
namespace esphome {
namespace bme680_bsec {
#ifdef USE_BSEC
static const char *const TAG = "bme680_bsec.sensor";
static const std::string IAQ_ACCURACY_STATES[4] = {"Stabilizing", "Uncertain", "Calibrating", "Calibrated"};
std::vector<BME680BSECComponent *>
BME680BSECComponent::instances; // NOLINT(cppcoreguidelines-avoid-non-const-global-variables)
uint8_t BME680BSECComponent::work_buffer_[BSEC_MAX_WORKBUFFER_SIZE] = {0};
void BME680BSECComponent::setup() {
ESP_LOGCONFIG(TAG, "Running setup for '%s'", this->device_id_.c_str());
uint8_t new_idx = BME680BSECComponent::instances.size();
BME680BSECComponent::instances.push_back(this);
this->bsec_state_data_valid_ = false;
// Initialize the bme680_ structure (passed-in to the bme680_* functions) and the BME680 device
this->bme680_.dev_id =
new_idx; // This is a "Place holder to store the id of the device structure" (see bme680_defs.h).
// This will be passed-in as first parameter to the next "read" and "write" function pointers.
// We currently use the index of the object in the BME680BSECComponent::instances vector to identify
// the different devices in the system.
this->bme680_.intf = BME680_I2C_INTF;
this->bme680_.read = BME680BSECComponent::read_bytes_wrapper;
this->bme680_.write = BME680BSECComponent::write_bytes_wrapper;
this->bme680_.delay_ms = BME680BSECComponent::delay_ms;
this->bme680_.amb_temp = 25;
this->bme680_status_ = bme680_init(&this->bme680_);
if (this->bme680_status_ != BME680_OK) {
this->mark_failed();
return;
}
// Initialize the BSEC library
if (this->reinit_bsec_lib_() != 0) {
this->mark_failed();
return;
}
// Load the BSEC library state from storage
this->load_state_();
}
void BME680BSECComponent::set_config_() {
if (this->sample_rate_ == SAMPLE_RATE_ULP) {
if (this->supply_voltage_ == SUPPLY_VOLTAGE_3V3) {
const uint8_t config[] = {
#include "config/generic_33v_300s_28d/bsec_iaq.txt"
};
this->bsec_status_ =
bsec_set_configuration(config, BSEC_MAX_PROPERTY_BLOB_SIZE, this->work_buffer_, sizeof(this->work_buffer_));
} else { // SUPPLY_VOLTAGE_1V8
const uint8_t config[] = {
#include "config/generic_18v_300s_28d/bsec_iaq.txt"
};
this->bsec_status_ =
bsec_set_configuration(config, BSEC_MAX_PROPERTY_BLOB_SIZE, this->work_buffer_, sizeof(this->work_buffer_));
}
} else { // SAMPLE_RATE_LP
if (this->supply_voltage_ == SUPPLY_VOLTAGE_3V3) {
const uint8_t config[] = {
#include "config/generic_33v_3s_28d/bsec_iaq.txt"
};
this->bsec_status_ =
bsec_set_configuration(config, BSEC_MAX_PROPERTY_BLOB_SIZE, this->work_buffer_, sizeof(this->work_buffer_));
} else { // SUPPLY_VOLTAGE_1V8
const uint8_t config[] = {
#include "config/generic_18v_3s_28d/bsec_iaq.txt"
};
this->bsec_status_ =
bsec_set_configuration(config, BSEC_MAX_PROPERTY_BLOB_SIZE, this->work_buffer_, sizeof(this->work_buffer_));
}
}
}
float BME680BSECComponent::calc_sensor_sample_rate_(SampleRate sample_rate) {
if (sample_rate == SAMPLE_RATE_DEFAULT) {
sample_rate = this->sample_rate_;
}
return sample_rate == SAMPLE_RATE_ULP ? BSEC_SAMPLE_RATE_ULP : BSEC_SAMPLE_RATE_LP;
}
void BME680BSECComponent::update_subscription_() {
bsec_sensor_configuration_t virtual_sensors[BSEC_NUMBER_OUTPUTS];
int num_virtual_sensors = 0;
if (this->iaq_sensor_) {
virtual_sensors[num_virtual_sensors].sensor_id =
this->iaq_mode_ == IAQ_MODE_STATIC ? BSEC_OUTPUT_STATIC_IAQ : BSEC_OUTPUT_IAQ;
virtual_sensors[num_virtual_sensors].sample_rate = this->calc_sensor_sample_rate_(SAMPLE_RATE_DEFAULT);
num_virtual_sensors++;
}
if (this->co2_equivalent_sensor_) {
virtual_sensors[num_virtual_sensors].sensor_id = BSEC_OUTPUT_CO2_EQUIVALENT;
virtual_sensors[num_virtual_sensors].sample_rate = this->calc_sensor_sample_rate_(SAMPLE_RATE_DEFAULT);
num_virtual_sensors++;
}
if (this->breath_voc_equivalent_sensor_) {
virtual_sensors[num_virtual_sensors].sensor_id = BSEC_OUTPUT_BREATH_VOC_EQUIVALENT;
virtual_sensors[num_virtual_sensors].sample_rate = this->calc_sensor_sample_rate_(SAMPLE_RATE_DEFAULT);
num_virtual_sensors++;
}
if (this->pressure_sensor_) {
virtual_sensors[num_virtual_sensors].sensor_id = BSEC_OUTPUT_RAW_PRESSURE;
virtual_sensors[num_virtual_sensors].sample_rate = this->calc_sensor_sample_rate_(this->pressure_sample_rate_);
num_virtual_sensors++;
}
if (this->gas_resistance_sensor_) {
virtual_sensors[num_virtual_sensors].sensor_id = BSEC_OUTPUT_RAW_GAS;
virtual_sensors[num_virtual_sensors].sample_rate = this->calc_sensor_sample_rate_(SAMPLE_RATE_DEFAULT);
num_virtual_sensors++;
}
if (this->temperature_sensor_) {
virtual_sensors[num_virtual_sensors].sensor_id = BSEC_OUTPUT_SENSOR_HEAT_COMPENSATED_TEMPERATURE;
virtual_sensors[num_virtual_sensors].sample_rate = this->calc_sensor_sample_rate_(this->temperature_sample_rate_);
num_virtual_sensors++;
}
if (this->humidity_sensor_) {
virtual_sensors[num_virtual_sensors].sensor_id = BSEC_OUTPUT_SENSOR_HEAT_COMPENSATED_HUMIDITY;
virtual_sensors[num_virtual_sensors].sample_rate = this->calc_sensor_sample_rate_(this->humidity_sample_rate_);
num_virtual_sensors++;
}
bsec_sensor_configuration_t sensor_settings[BSEC_MAX_PHYSICAL_SENSOR];
uint8_t num_sensor_settings = BSEC_MAX_PHYSICAL_SENSOR;
this->bsec_status_ =
bsec_update_subscription(virtual_sensors, num_virtual_sensors, sensor_settings, &num_sensor_settings);
ESP_LOGV(TAG, "%s: updating subscription for %d virtual sensors (out=%d sensors)", this->device_id_.c_str(),
num_virtual_sensors, num_sensor_settings);
}
void BME680BSECComponent::dump_config() {
ESP_LOGCONFIG(TAG, "%s via BSEC:", this->device_id_.c_str());
bsec_version_t version;
bsec_get_version(&version);
ESP_LOGCONFIG(TAG, " BSEC Version: %d.%d.%d.%d", version.major, version.minor, version.major_bugfix,
version.minor_bugfix);
LOG_I2C_DEVICE(this);
if (this->is_failed()) {
ESP_LOGE(TAG, "Communication failed (BSEC Status: %d, BME680 Status: %d)", this->bsec_status_,
this->bme680_status_);
}
ESP_LOGCONFIG(TAG,
" Temperature Offset: %.2f\n"
" IAQ Mode: %s\n"
" Supply Voltage: %sV\n"
" Sample Rate: %s\n"
" State Save Interval: %ims",
this->temperature_offset_, this->iaq_mode_ == IAQ_MODE_STATIC ? "Static" : "Mobile",
this->supply_voltage_ == SUPPLY_VOLTAGE_3V3 ? "3.3" : "1.8",
BME680_BSEC_SAMPLE_RATE_LOG(this->sample_rate_), this->state_save_interval_ms_);
LOG_SENSOR(" ", "Temperature", this->temperature_sensor_);
ESP_LOGCONFIG(TAG, " Sample Rate: %s", BME680_BSEC_SAMPLE_RATE_LOG(this->temperature_sample_rate_));
LOG_SENSOR(" ", "Pressure", this->pressure_sensor_);
ESP_LOGCONFIG(TAG, " Sample Rate: %s", BME680_BSEC_SAMPLE_RATE_LOG(this->pressure_sample_rate_));
LOG_SENSOR(" ", "Humidity", this->humidity_sensor_);
ESP_LOGCONFIG(TAG, " Sample Rate: %s", BME680_BSEC_SAMPLE_RATE_LOG(this->humidity_sample_rate_));
LOG_SENSOR(" ", "Gas Resistance", this->gas_resistance_sensor_);
LOG_SENSOR(" ", "IAQ", this->iaq_sensor_);
LOG_SENSOR(" ", "Numeric IAQ Accuracy", this->iaq_accuracy_sensor_);
LOG_TEXT_SENSOR(" ", "IAQ Accuracy", this->iaq_accuracy_text_sensor_);
LOG_SENSOR(" ", "CO2 Equivalent", this->co2_equivalent_sensor_);
LOG_SENSOR(" ", "Breath VOC Equivalent", this->breath_voc_equivalent_sensor_);
}
float BME680BSECComponent::get_setup_priority() const { return setup_priority::DATA; }
void BME680BSECComponent::loop() {
this->run_();
if (this->bsec_status_ < BSEC_OK || this->bme680_status_ < BME680_OK) {
this->status_set_error();
} else {
this->status_clear_error();
}
if (this->bsec_status_ > BSEC_OK || this->bme680_status_ > BME680_OK) {
this->status_set_warning();
} else {
this->status_clear_warning();
}
// Process a single action from the queue. These are primarily sensor state publishes
// that in totality take too long to send in a single call.
if (this->queue_.size()) {
auto action = std::move(this->queue_.front());
this->queue_.pop();
action();
}
}
void BME680BSECComponent::run_() {
int64_t curr_time_ns = this->get_time_ns_();
if (curr_time_ns < this->next_call_ns_) {
return;
}
ESP_LOGV(TAG, "%s: Performing sensor run", this->device_id_.c_str());
// Restore BSEC library state
// The reinit_bsec_lib_ method is computationally expensive: it takes 1200÷2900 microseconds on a ESP32.
// It can be skipped entirely when there is only one device (since the BSEC library won't be shared)
if (BME680BSECComponent::instances.size() > 1) {
int res = this->reinit_bsec_lib_();
if (res != 0)
return;
}
this->bsec_status_ = bsec_sensor_control(curr_time_ns, &this->bme680_settings_);
if (this->bsec_status_ < BSEC_OK) {
ESP_LOGW(TAG, "Failed to fetch sensor control settings (BSEC Error Code %d)", this->bsec_status_);
return;
}
this->next_call_ns_ = this->bme680_settings_.next_call;
if (this->bme680_settings_.trigger_measurement) {
this->bme680_.tph_sett.os_temp = this->bme680_settings_.temperature_oversampling;
this->bme680_.tph_sett.os_pres = this->bme680_settings_.pressure_oversampling;
this->bme680_.tph_sett.os_hum = this->bme680_settings_.humidity_oversampling;
this->bme680_.gas_sett.run_gas = this->bme680_settings_.run_gas;
this->bme680_.gas_sett.heatr_temp = this->bme680_settings_.heater_temperature;
this->bme680_.gas_sett.heatr_dur = this->bme680_settings_.heating_duration;
this->bme680_.power_mode = BME680_FORCED_MODE;
uint16_t desired_settings = BME680_OST_SEL | BME680_OSP_SEL | BME680_OSH_SEL | BME680_GAS_SENSOR_SEL;
this->bme680_status_ = bme680_set_sensor_settings(desired_settings, &this->bme680_);
if (this->bme680_status_ != BME680_OK) {
ESP_LOGW(TAG, "Failed to set sensor settings (BME680 Error Code %d)", this->bme680_status_);
return;
}
this->bme680_status_ = bme680_set_sensor_mode(&this->bme680_);
if (this->bme680_status_ != BME680_OK) {
ESP_LOGW(TAG, "Failed to set sensor mode (BME680 Error Code %d)", this->bme680_status_);
return;
}
uint16_t meas_dur = 0;
bme680_get_profile_dur(&meas_dur, &this->bme680_);
// Since we are about to go "out of scope" in the loop, take a snapshot of the state now so we can restore it later
// TODO: it would be interesting to see if this is really needed here, or if it's needed only after each
// bsec_do_steps() call
if (BME680BSECComponent::instances.size() > 1)
this->snapshot_state_();
ESP_LOGV(TAG, "Queueing read in %ums", meas_dur);
this->set_timeout("read", meas_dur, [this]() { this->read_(); });
} else {
ESP_LOGV(TAG, "Measurement not required");
this->read_();
}
}
void BME680BSECComponent::read_() {
ESP_LOGV(TAG, "%s: Reading data", this->device_id_.c_str());
int64_t curr_time_ns = this->get_time_ns_();
if (this->bme680_settings_.trigger_measurement) {
while (this->bme680_.power_mode != BME680_SLEEP_MODE) {
this->bme680_status_ = bme680_get_sensor_mode(&this->bme680_);
if (this->bme680_status_ != BME680_OK) {
ESP_LOGW(TAG, "Failed to get sensor mode (BME680 Error Code %d)", this->bme680_status_);
}
}
}
if (!this->bme680_settings_.process_data) {
ESP_LOGV(TAG, "Data processing not required");
return;
}
struct bme680_field_data data;
this->bme680_status_ = bme680_get_sensor_data(&data, &this->bme680_);
if (this->bme680_status_ != BME680_OK) {
ESP_LOGW(TAG, "Failed to get sensor data (BME680 Error Code %d)", this->bme680_status_);
return;
}
if (!(data.status & BME680_NEW_DATA_MSK)) {
ESP_LOGD(TAG, "BME680 did not report new data");
return;
}
bsec_input_t inputs[BSEC_MAX_PHYSICAL_SENSOR]; // Temperature, Pressure, Humidity & Gas Resistance
uint8_t num_inputs = 0;
if (this->bme680_settings_.process_data & BSEC_PROCESS_TEMPERATURE) {
inputs[num_inputs].sensor_id = BSEC_INPUT_TEMPERATURE;
inputs[num_inputs].signal = data.temperature / 100.0f;
inputs[num_inputs].time_stamp = curr_time_ns;
num_inputs++;
// Temperature offset from the real temperature due to external heat sources
inputs[num_inputs].sensor_id = BSEC_INPUT_HEATSOURCE;
inputs[num_inputs].signal = this->temperature_offset_;
inputs[num_inputs].time_stamp = curr_time_ns;
num_inputs++;
}
if (this->bme680_settings_.process_data & BSEC_PROCESS_HUMIDITY) {
inputs[num_inputs].sensor_id = BSEC_INPUT_HUMIDITY;
inputs[num_inputs].signal = data.humidity / 1000.0f;
inputs[num_inputs].time_stamp = curr_time_ns;
num_inputs++;
}
if (this->bme680_settings_.process_data & BSEC_PROCESS_PRESSURE) {
inputs[num_inputs].sensor_id = BSEC_INPUT_PRESSURE;
inputs[num_inputs].signal = data.pressure;
inputs[num_inputs].time_stamp = curr_time_ns;
num_inputs++;
}
if (this->bme680_settings_.process_data & BSEC_PROCESS_GAS) {
if (data.status & BME680_GASM_VALID_MSK) {
inputs[num_inputs].sensor_id = BSEC_INPUT_GASRESISTOR;
inputs[num_inputs].signal = data.gas_resistance;
inputs[num_inputs].time_stamp = curr_time_ns;
num_inputs++;
} else {
ESP_LOGD(TAG, "BME680 did not report gas data");
}
}
if (num_inputs < 1) {
ESP_LOGD(TAG, "No signal inputs available for BSEC");
return;
}
// Restore BSEC library state
// The reinit_bsec_lib_ method is computationally expensive: it takes 1200÷2900 microseconds on a ESP32.
// It can be skipped entirely when there is only one device (since the BSEC library won't be shared)
if (BME680BSECComponent::instances.size() > 1) {
int res = this->reinit_bsec_lib_();
if (res != 0)
return;
// Now that the BSEC library has been re-initialized, bsec_sensor_control *NEEDS* to be called in order to support
// multiple devices with a different set of enabled sensors (even if the bme680_settings_ data is not used)
this->bsec_status_ = bsec_sensor_control(curr_time_ns, &this->bme680_settings_);
if (this->bsec_status_ < BSEC_OK) {
ESP_LOGW(TAG, "Failed to fetch sensor control settings (BSEC Error Code %d)", this->bsec_status_);
return;
}
}
bsec_output_t outputs[BSEC_NUMBER_OUTPUTS];
uint8_t num_outputs = BSEC_NUMBER_OUTPUTS;
this->bsec_status_ = bsec_do_steps(inputs, num_inputs, outputs, &num_outputs);
if (this->bsec_status_ != BSEC_OK) {
ESP_LOGW(TAG, "BSEC failed to process signals (BSEC Error Code %d)", this->bsec_status_);
return;
}
ESP_LOGV(TAG, "%s: after bsec_do_steps: num_inputs=%d num_outputs=%d", this->device_id_.c_str(), num_inputs,
num_outputs);
// Since we are about to go "out of scope" in the loop, take a snapshot of the state now so we can restore it later
if (BME680BSECComponent::instances.size() > 1)
this->snapshot_state_();
if (num_outputs < 1) {
ESP_LOGD(TAG, "No signal outputs provided by BSEC");
return;
}
this->publish_(outputs, num_outputs);
}
void BME680BSECComponent::publish_(const bsec_output_t *outputs, uint8_t num_outputs) {
ESP_LOGV(TAG, "%s: Queuing sensor state publish actions", this->device_id_.c_str());
for (uint8_t i = 0; i < num_outputs; i++) {
float signal = outputs[i].signal;
switch (outputs[i].sensor_id) {
case BSEC_OUTPUT_IAQ:
case BSEC_OUTPUT_STATIC_IAQ: {
uint8_t accuracy = outputs[i].accuracy;
this->queue_push_([this, signal]() { this->publish_sensor_(this->iaq_sensor_, signal); });
this->queue_push_([this, accuracy]() {
this->publish_sensor_(this->iaq_accuracy_text_sensor_, IAQ_ACCURACY_STATES[accuracy]);
});
this->queue_push_([this, accuracy]() { this->publish_sensor_(this->iaq_accuracy_sensor_, accuracy, true); });
// Queue up an opportunity to save state
this->queue_push_([this, accuracy]() { this->save_state_(accuracy); });
} break;
case BSEC_OUTPUT_CO2_EQUIVALENT:
this->queue_push_([this, signal]() { this->publish_sensor_(this->co2_equivalent_sensor_, signal); });
break;
case BSEC_OUTPUT_BREATH_VOC_EQUIVALENT:
this->queue_push_([this, signal]() { this->publish_sensor_(this->breath_voc_equivalent_sensor_, signal); });
break;
case BSEC_OUTPUT_RAW_PRESSURE:
this->queue_push_([this, signal]() { this->publish_sensor_(this->pressure_sensor_, signal / 100.0f); });
break;
case BSEC_OUTPUT_RAW_GAS:
this->queue_push_([this, signal]() { this->publish_sensor_(this->gas_resistance_sensor_, signal); });
break;
case BSEC_OUTPUT_SENSOR_HEAT_COMPENSATED_TEMPERATURE:
this->queue_push_([this, signal]() { this->publish_sensor_(this->temperature_sensor_, signal); });
break;
case BSEC_OUTPUT_SENSOR_HEAT_COMPENSATED_HUMIDITY:
this->queue_push_([this, signal]() { this->publish_sensor_(this->humidity_sensor_, signal); });
break;
}
}
}
int64_t BME680BSECComponent::get_time_ns_() {
int64_t time_ms = millis();
if (this->last_time_ms_ > time_ms) {
this->millis_overflow_counter_++;
}
this->last_time_ms_ = time_ms;
return (time_ms + ((int64_t) this->millis_overflow_counter_ << 32)) * INT64_C(1000000);
}
void BME680BSECComponent::publish_sensor_(sensor::Sensor *sensor, float value, bool change_only) {
if (!sensor || (change_only && sensor->has_state() && sensor->state == value)) {
return;
}
sensor->publish_state(value);
}
void BME680BSECComponent::publish_sensor_(text_sensor::TextSensor *sensor, const std::string &value) {
if (!sensor || (sensor->has_state() && sensor->state == value)) {
return;
}
sensor->publish_state(value);
}
// Communication function - read
// First parameter is the "dev_id" member of our "bme680_" object, which is passed-back here as-is
int8_t BME680BSECComponent::read_bytes_wrapper(uint8_t devid, uint8_t a_register, uint8_t *data, uint16_t len) {
BME680BSECComponent *inst = instances[devid];
// Use the I2CDevice::read_bytes method to perform the actual I2C register read
return inst->read_bytes(a_register, data, len) ? 0 : -1;
}
// Communication function - write
// First parameter is the "dev_id" member of our "bme680_" object, which is passed-back here as-is
int8_t BME680BSECComponent::write_bytes_wrapper(uint8_t devid, uint8_t a_register, uint8_t *data, uint16_t len) {
BME680BSECComponent *inst = instances[devid];
// Use the I2CDevice::write_bytes method to perform the actual I2C register write
return inst->write_bytes(a_register, data, len) ? 0 : -1;
}
void BME680BSECComponent::delay_ms(uint32_t period) {
ESP_LOGV(TAG, "Delaying for %ums", period);
delay(period);
}
// Fetch the BSEC library state and save it in the bsec_state_data_ member (volatile memory)
// Used to share the library when using more than one sensor
void BME680BSECComponent::snapshot_state_() {
uint32_t num_serialized_state = BSEC_MAX_STATE_BLOB_SIZE;
this->bsec_status_ = bsec_get_state(0, this->bsec_state_data_, BSEC_MAX_STATE_BLOB_SIZE, this->work_buffer_,
sizeof(this->work_buffer_), &num_serialized_state);
if (this->bsec_status_ != BSEC_OK) {
ESP_LOGW(TAG, "%s: Failed to fetch BSEC library state for snapshot (BSEC Error Code %d)", this->device_id_.c_str(),
this->bsec_status_);
return;
}
this->bsec_state_data_valid_ = true;
}
// Restores the BSEC library state from a snapshot in memory
// Used to share the library when using more than one sensor
void BME680BSECComponent::restore_state_() {
if (!this->bsec_state_data_valid_) {
ESP_LOGV(TAG, "%s: BSEC state data NOT valid, aborting restore_state_()", this->device_id_.c_str());
return;
}
this->bsec_status_ =
bsec_set_state(this->bsec_state_data_, BSEC_MAX_STATE_BLOB_SIZE, this->work_buffer_, sizeof(this->work_buffer_));
if (this->bsec_status_ != BSEC_OK) {
ESP_LOGW(TAG, "Failed to restore BSEC library state (BSEC Error Code %d)", this->bsec_status_);
return;
}
}
int BME680BSECComponent::reinit_bsec_lib_() {
this->bsec_status_ = bsec_init();
if (this->bsec_status_ != BSEC_OK) {
this->mark_failed();
return -1;
}
this->set_config_();
if (this->bsec_status_ != BSEC_OK) {
this->mark_failed();
return -2;
}
this->restore_state_();
this->update_subscription_();
if (this->bsec_status_ != BSEC_OK) {
this->mark_failed();
return -3;
}
return 0;
}
void BME680BSECComponent::load_state_() {
uint32_t hash = fnv1_hash("bme680_bsec_state_" + this->device_id_);
this->bsec_state_ = global_preferences->make_preference<uint8_t[BSEC_MAX_STATE_BLOB_SIZE]>(hash, true);
if (!this->bsec_state_.load(&this->bsec_state_data_)) {
// No saved BSEC library state available
return;
}
ESP_LOGV(TAG, "%s: Loading BSEC library state", this->device_id_.c_str());
this->bsec_status_ =
bsec_set_state(this->bsec_state_data_, BSEC_MAX_STATE_BLOB_SIZE, this->work_buffer_, sizeof(this->work_buffer_));
if (this->bsec_status_ != BSEC_OK) {
ESP_LOGW(TAG, "%s: Failed to load BSEC library state (BSEC Error Code %d)", this->device_id_.c_str(),
this->bsec_status_);
return;
}
// All OK: set the BSEC state data as valid
this->bsec_state_data_valid_ = true;
ESP_LOGI(TAG, "%s: Loaded BSEC library state", this->device_id_.c_str());
}
void BME680BSECComponent::save_state_(uint8_t accuracy) {
if (accuracy < 3 || (millis() - this->last_state_save_ms_ < this->state_save_interval_ms_)) {
return;
}
if (BME680BSECComponent::instances.size() <= 1) {
// When a single device is in use, no snapshot is taken regularly so one is taken now
// On multiple devices, a snapshot is taken at every loop, so there is no need to take one here
this->snapshot_state_();
}
if (!this->bsec_state_data_valid_)
return;
ESP_LOGV(TAG, "%s: Saving state", this->device_id_.c_str());
if (!this->bsec_state_.save(&this->bsec_state_data_)) {
ESP_LOGW(TAG, "Failed to save state");
return;
}
this->last_state_save_ms_ = millis();
ESP_LOGI(TAG, "Saved state");
}
#endif
} // namespace bme680_bsec
} // namespace esphome