#pragma once #include "esphome/core/component.h" #include "esphome/core/hal.h" #include "esphome/components/sensor/sensor.h" #include "esphome/components/voltage_sampler/voltage_sampler.h" namespace esphome { namespace ct_clamp { class CTClampSensor : public sensor::Sensor, public PollingComponent { public: void update() override; void loop() override; void dump_config() override; float get_setup_priority() const override { // After the base sensor has been initialized return setup_priority::DATA - 1.0f; } void set_sample_duration(uint32_t sample_duration) { sample_duration_ = sample_duration; } void set_source(voltage_sampler::VoltageSampler *source) { source_ = source; } protected: /// High Frequency loop() requester used during sampling phase. HighFrequencyLoopRequester high_freq_; /// Duration in ms of the sampling phase. uint32_t sample_duration_; /// The sampling source to read values from. voltage_sampler::VoltageSampler *source_; /** The DC offset of the circuit. * * Diagram: https://learn.openenergymonitor.org/electricity-monitoring/ct-sensors/interface-with-arduino * * The current clamp only measures AC, so any DC component is an unwanted artifact from the * sampling circuit. The AC component is essentially the same as the calculating the Standard-Deviation, * which can be done by cumulating 3 values per sample: * 1) Number of samples * 2) Sum of samples * 3) Sum of sample squared * https://en.wikipedia.org/wiki/Root_mean_square */ float last_value_ = 0.0f; float sample_sum_ = 0.0f; float sample_squared_sum_ = 0.0f; uint32_t num_samples_ = 0; bool is_sampling_ = false; }; } // namespace ct_clamp } // namespace esphome