#include "ethernet_component.h" #include "esphome/core/application.h" #include "esphome/core/log.h" #include "esphome/core/util.h" #ifdef USE_ESP32 #include #include #include "esp_event.h" #ifdef USE_ETHERNET_SPI #include #include #endif namespace esphome { namespace ethernet { static const char *const TAG = "ethernet"; EthernetComponent *global_eth_component; // NOLINT(cppcoreguidelines-avoid-non-const-global-variables) #define ESPHL_ERROR_CHECK(err, message) \ if ((err) != ESP_OK) { \ ESP_LOGE(TAG, message ": (%d) %s", err, esp_err_to_name(err)); \ this->mark_failed(); \ return; \ } #define ESPHL_ERROR_CHECK_RET(err, message, ret) \ if ((err) != ESP_OK) { \ ESP_LOGE(TAG, message ": (%d) %s", err, esp_err_to_name(err)); \ this->mark_failed(); \ return ret; \ } EthernetComponent::EthernetComponent() { global_eth_component = this; } void EthernetComponent::setup() { ESP_LOGCONFIG(TAG, "Setting up Ethernet..."); if (esp_reset_reason() != ESP_RST_DEEPSLEEP) { // Delay here to allow power to stabilise before Ethernet is initialized. delay(300); // NOLINT } esp_err_t err; #ifdef USE_ETHERNET_SPI // Install GPIO ISR handler to be able to service SPI Eth modules interrupts gpio_install_isr_service(0); spi_bus_config_t buscfg = { .mosi_io_num = this->mosi_pin_, .miso_io_num = this->miso_pin_, .sclk_io_num = this->clk_pin_, .quadwp_io_num = -1, .quadhd_io_num = -1, .data4_io_num = -1, .data5_io_num = -1, .data6_io_num = -1, .data7_io_num = -1, .max_transfer_sz = 0, .flags = 0, .intr_flags = 0, }; #if defined(USE_ESP32_VARIANT_ESP32C3) || defined(USE_ESP32_VARIANT_ESP32S2) || defined(USE_ESP32_VARIANT_ESP32S3) || \ defined(USE_ESP32_VARIANT_ESP32C6) auto host = SPI2_HOST; #else auto host = SPI3_HOST; #endif err = spi_bus_initialize(host, &buscfg, SPI_DMA_CH_AUTO); ESPHL_ERROR_CHECK(err, "SPI bus initialize error"); #endif err = esp_netif_init(); ESPHL_ERROR_CHECK(err, "ETH netif init error"); err = esp_event_loop_create_default(); ESPHL_ERROR_CHECK(err, "ETH event loop error"); esp_netif_config_t cfg = ESP_NETIF_DEFAULT_ETH(); this->eth_netif_ = esp_netif_new(&cfg); // Init MAC and PHY configs to default eth_phy_config_t phy_config = ETH_PHY_DEFAULT_CONFIG(); eth_mac_config_t mac_config = ETH_MAC_DEFAULT_CONFIG(); #ifdef USE_ETHERNET_SPI // Configure SPI interface and Ethernet driver for specific SPI module spi_device_interface_config_t devcfg = { .command_bits = 16, // Actually it's the address phase in W5500 SPI frame .address_bits = 8, // Actually it's the control phase in W5500 SPI frame .dummy_bits = 0, .mode = 0, .duty_cycle_pos = 0, .cs_ena_pretrans = 0, .cs_ena_posttrans = 0, .clock_speed_hz = this->clock_speed_, .input_delay_ns = 0, .spics_io_num = this->cs_pin_, .flags = 0, .queue_size = 20, .pre_cb = nullptr, .post_cb = nullptr, }; #if USE_ESP_IDF && (ESP_IDF_VERSION_MAJOR >= 5) eth_w5500_config_t w5500_config = ETH_W5500_DEFAULT_CONFIG(host, &devcfg); #else spi_device_handle_t spi_handle = nullptr; err = spi_bus_add_device(host, &devcfg, &spi_handle); ESPHL_ERROR_CHECK(err, "SPI bus add device error"); eth_w5500_config_t w5500_config = ETH_W5500_DEFAULT_CONFIG(spi_handle); #endif w5500_config.int_gpio_num = this->interrupt_pin_; phy_config.phy_addr = this->phy_addr_spi_; phy_config.reset_gpio_num = this->reset_pin_; esp_eth_mac_t *mac = esp_eth_mac_new_w5500(&w5500_config, &mac_config); #elif defined(USE_ETHERNET_OPENETH) esp_eth_mac_t *mac = esp_eth_mac_new_openeth(&mac_config); #else phy_config.phy_addr = this->phy_addr_; phy_config.reset_gpio_num = this->power_pin_; #if ESP_IDF_VERSION_MAJOR >= 5 eth_esp32_emac_config_t esp32_emac_config = ETH_ESP32_EMAC_DEFAULT_CONFIG(); esp32_emac_config.smi_mdc_gpio_num = this->mdc_pin_; esp32_emac_config.smi_mdio_gpio_num = this->mdio_pin_; esp32_emac_config.clock_config.rmii.clock_mode = this->clk_mode_; esp32_emac_config.clock_config.rmii.clock_gpio = this->clk_gpio_; esp_eth_mac_t *mac = esp_eth_mac_new_esp32(&esp32_emac_config, &mac_config); #else mac_config.smi_mdc_gpio_num = this->mdc_pin_; mac_config.smi_mdio_gpio_num = this->mdio_pin_; mac_config.clock_config.rmii.clock_mode = this->clk_mode_; mac_config.clock_config.rmii.clock_gpio = this->clk_gpio_; esp_eth_mac_t *mac = esp_eth_mac_new_esp32(&mac_config); #endif #endif switch (this->type_) { #ifdef USE_ETHERNET_OPENETH case ETHERNET_TYPE_OPENETH: { phy_config.autonego_timeout_ms = 1000; this->phy_ = esp_eth_phy_new_dp83848(&phy_config); break; } #endif #if CONFIG_ETH_USE_ESP32_EMAC case ETHERNET_TYPE_LAN8720: { this->phy_ = esp_eth_phy_new_lan87xx(&phy_config); break; } case ETHERNET_TYPE_RTL8201: { this->phy_ = esp_eth_phy_new_rtl8201(&phy_config); break; } case ETHERNET_TYPE_DP83848: { this->phy_ = esp_eth_phy_new_dp83848(&phy_config); break; } case ETHERNET_TYPE_IP101: { this->phy_ = esp_eth_phy_new_ip101(&phy_config); break; } case ETHERNET_TYPE_JL1101: { this->phy_ = esp_eth_phy_new_jl1101(&phy_config); break; } case ETHERNET_TYPE_KSZ8081: case ETHERNET_TYPE_KSZ8081RNA: { #if ESP_IDF_VERSION_MAJOR >= 5 this->phy_ = esp_eth_phy_new_ksz80xx(&phy_config); #else this->phy_ = esp_eth_phy_new_ksz8081(&phy_config); #endif break; } #endif #ifdef USE_ETHERNET_SPI case ETHERNET_TYPE_W5500: { this->phy_ = esp_eth_phy_new_w5500(&phy_config); break; } #endif default: { this->mark_failed(); return; } } esp_eth_config_t eth_config = ETH_DEFAULT_CONFIG(mac, this->phy_); this->eth_handle_ = nullptr; err = esp_eth_driver_install(ð_config, &this->eth_handle_); ESPHL_ERROR_CHECK(err, "ETH driver install error"); #ifndef USE_ETHERNET_SPI if (this->type_ == ETHERNET_TYPE_KSZ8081RNA && this->clk_mode_ == EMAC_CLK_OUT) { // KSZ8081RNA default is incorrect. It expects a 25MHz clock instead of the 50MHz we provide. this->ksz8081_set_clock_reference_(mac); } for (const auto &phy_register : this->phy_registers_) { this->write_phy_register_(mac, phy_register); } #endif // use ESP internal eth mac uint8_t mac_addr[6]; esp_read_mac(mac_addr, ESP_MAC_ETH); err = esp_eth_ioctl(this->eth_handle_, ETH_CMD_S_MAC_ADDR, mac_addr); ESPHL_ERROR_CHECK(err, "set mac address error"); /* attach Ethernet driver to TCP/IP stack */ err = esp_netif_attach(this->eth_netif_, esp_eth_new_netif_glue(this->eth_handle_)); ESPHL_ERROR_CHECK(err, "ETH netif attach error"); // Register user defined event handers err = esp_event_handler_register(ETH_EVENT, ESP_EVENT_ANY_ID, &EthernetComponent::eth_event_handler, nullptr); ESPHL_ERROR_CHECK(err, "ETH event handler register error"); err = esp_event_handler_register(IP_EVENT, IP_EVENT_ETH_GOT_IP, &EthernetComponent::got_ip_event_handler, nullptr); ESPHL_ERROR_CHECK(err, "GOT IP event handler register error"); #if USE_NETWORK_IPV6 err = esp_event_handler_register(IP_EVENT, IP_EVENT_GOT_IP6, &EthernetComponent::got_ip6_event_handler, nullptr); ESPHL_ERROR_CHECK(err, "GOT IPv6 event handler register error"); #endif /* USE_NETWORK_IPV6 */ /* start Ethernet driver state machine */ err = esp_eth_start(this->eth_handle_); ESPHL_ERROR_CHECK(err, "ETH start error"); } void EthernetComponent::loop() { const uint32_t now = millis(); switch (this->state_) { case EthernetComponentState::STOPPED: if (this->started_) { ESP_LOGI(TAG, "Starting ethernet connection"); this->state_ = EthernetComponentState::CONNECTING; this->start_connect_(); } break; case EthernetComponentState::CONNECTING: if (!this->started_) { ESP_LOGI(TAG, "Stopped ethernet connection"); this->state_ = EthernetComponentState::STOPPED; } else if (this->connected_) { // connection established ESP_LOGI(TAG, "Connected via Ethernet!"); this->state_ = EthernetComponentState::CONNECTED; this->dump_connect_params_(); this->status_clear_warning(); } else if (now - this->connect_begin_ > 15000) { ESP_LOGW(TAG, "Connecting via ethernet failed! Re-connecting..."); this->start_connect_(); } break; case EthernetComponentState::CONNECTED: if (!this->started_) { ESP_LOGI(TAG, "Stopped ethernet connection"); this->state_ = EthernetComponentState::STOPPED; } else if (!this->connected_) { ESP_LOGW(TAG, "Connection via Ethernet lost! Re-connecting..."); this->state_ = EthernetComponentState::CONNECTING; this->start_connect_(); } break; } } void EthernetComponent::dump_config() { const char *eth_type; switch (this->type_) { case ETHERNET_TYPE_LAN8720: eth_type = "LAN8720"; break; case ETHERNET_TYPE_RTL8201: eth_type = "RTL8201"; break; case ETHERNET_TYPE_DP83848: eth_type = "DP83848"; break; case ETHERNET_TYPE_IP101: eth_type = "IP101"; break; case ETHERNET_TYPE_JL1101: eth_type = "JL1101"; break; case ETHERNET_TYPE_KSZ8081: eth_type = "KSZ8081"; break; case ETHERNET_TYPE_KSZ8081RNA: eth_type = "KSZ8081RNA"; break; case ETHERNET_TYPE_W5500: eth_type = "W5500"; break; case ETHERNET_TYPE_OPENETH: eth_type = "OPENETH"; break; default: eth_type = "Unknown"; break; } ESP_LOGCONFIG(TAG, "Ethernet:"); this->dump_connect_params_(); #ifdef USE_ETHERNET_SPI ESP_LOGCONFIG(TAG, " CLK Pin: %u", this->clk_pin_); ESP_LOGCONFIG(TAG, " MISO Pin: %u", this->miso_pin_); ESP_LOGCONFIG(TAG, " MOSI Pin: %u", this->mosi_pin_); ESP_LOGCONFIG(TAG, " CS Pin: %u", this->cs_pin_); ESP_LOGCONFIG(TAG, " IRQ Pin: %u", this->interrupt_pin_); ESP_LOGCONFIG(TAG, " Reset Pin: %d", this->reset_pin_); ESP_LOGCONFIG(TAG, " Clock Speed: %d MHz", this->clock_speed_ / 1000000); #else if (this->power_pin_ != -1) { ESP_LOGCONFIG(TAG, " Power Pin: %u", this->power_pin_); } ESP_LOGCONFIG(TAG, " MDC Pin: %u", this->mdc_pin_); ESP_LOGCONFIG(TAG, " MDIO Pin: %u", this->mdio_pin_); ESP_LOGCONFIG(TAG, " PHY addr: %u", this->phy_addr_); #endif ESP_LOGCONFIG(TAG, " Type: %s", eth_type); } float EthernetComponent::get_setup_priority() const { return setup_priority::WIFI; } bool EthernetComponent::can_proceed() { return this->is_connected(); } network::IPAddresses EthernetComponent::get_ip_addresses() { network::IPAddresses addresses; esp_netif_ip_info_t ip; esp_err_t err = esp_netif_get_ip_info(this->eth_netif_, &ip); if (err != ESP_OK) { ESP_LOGV(TAG, "esp_netif_get_ip_info failed: %s", esp_err_to_name(err)); // TODO: do something smarter // return false; } else { addresses[0] = network::IPAddress(&ip.ip); } #if USE_NETWORK_IPV6 struct esp_ip6_addr if_ip6s[CONFIG_LWIP_IPV6_NUM_ADDRESSES]; uint8_t count = 0; count = esp_netif_get_all_ip6(this->eth_netif_, if_ip6s); assert(count <= CONFIG_LWIP_IPV6_NUM_ADDRESSES); for (int i = 0; i < count; i++) { addresses[i + 1] = network::IPAddress(&if_ip6s[i]); } #endif /* USE_NETWORK_IPV6 */ return addresses; } network::IPAddress EthernetComponent::get_dns_address(uint8_t num) { const ip_addr_t *dns_ip = dns_getserver(num); return dns_ip; } void EthernetComponent::eth_event_handler(void *arg, esp_event_base_t event_base, int32_t event, void *event_data) { const char *event_name; switch (event) { case ETHERNET_EVENT_START: event_name = "ETH started"; global_eth_component->started_ = true; break; case ETHERNET_EVENT_STOP: event_name = "ETH stopped"; global_eth_component->started_ = false; global_eth_component->connected_ = false; break; case ETHERNET_EVENT_CONNECTED: event_name = "ETH connected"; break; case ETHERNET_EVENT_DISCONNECTED: event_name = "ETH disconnected"; global_eth_component->connected_ = false; break; default: return; } ESP_LOGV(TAG, "[Ethernet event] %s (num=%" PRId32 ")", event_name, event); } void EthernetComponent::got_ip_event_handler(void *arg, esp_event_base_t event_base, int32_t event_id, void *event_data) { ip_event_got_ip_t *event = (ip_event_got_ip_t *) event_data; const esp_netif_ip_info_t *ip_info = &event->ip_info; ESP_LOGV(TAG, "[Ethernet event] ETH Got IP " IPSTR, IP2STR(&ip_info->ip)); global_eth_component->got_ipv4_address_ = true; #if USE_NETWORK_IPV6 && (USE_NETWORK_MIN_IPV6_ADDR_COUNT > 0) global_eth_component->connected_ = global_eth_component->ipv6_count_ >= USE_NETWORK_MIN_IPV6_ADDR_COUNT; #else global_eth_component->connected_ = true; #endif /* USE_NETWORK_IPV6 */ } #if USE_NETWORK_IPV6 void EthernetComponent::got_ip6_event_handler(void *arg, esp_event_base_t event_base, int32_t event_id, void *event_data) { ip_event_got_ip6_t *event = (ip_event_got_ip6_t *) event_data; ESP_LOGV(TAG, "[Ethernet event] ETH Got IPv6: " IPV6STR, IPV62STR(event->ip6_info.ip)); global_eth_component->ipv6_count_ += 1; #if (USE_NETWORK_MIN_IPV6_ADDR_COUNT > 0) global_eth_component->connected_ = global_eth_component->got_ipv4_address_ && (global_eth_component->ipv6_count_ >= USE_NETWORK_MIN_IPV6_ADDR_COUNT); #else global_eth_component->connected_ = global_eth_component->got_ipv4_address_; #endif } #endif /* USE_NETWORK_IPV6 */ void EthernetComponent::start_connect_() { global_eth_component->got_ipv4_address_ = false; #if USE_NETWORK_IPV6 global_eth_component->ipv6_count_ = 0; #endif /* USE_NETWORK_IPV6 */ this->connect_begin_ = millis(); this->status_set_warning("waiting for IP configuration"); esp_err_t err; err = esp_netif_set_hostname(this->eth_netif_, App.get_name().c_str()); if (err != ERR_OK) { ESP_LOGW(TAG, "esp_netif_set_hostname failed: %s", esp_err_to_name(err)); } esp_netif_ip_info_t info; if (this->manual_ip_.has_value()) { info.ip = this->manual_ip_->static_ip; info.gw = this->manual_ip_->gateway; info.netmask = this->manual_ip_->subnet; } else { info.ip.addr = 0; info.gw.addr = 0; info.netmask.addr = 0; } esp_netif_dhcp_status_t status = ESP_NETIF_DHCP_INIT; err = esp_netif_dhcpc_get_status(this->eth_netif_, &status); ESPHL_ERROR_CHECK(err, "DHCPC Get Status Failed!"); ESP_LOGV(TAG, "DHCP Client Status: %d", status); err = esp_netif_dhcpc_stop(this->eth_netif_); if (err != ESP_ERR_ESP_NETIF_DHCP_ALREADY_STOPPED) { ESPHL_ERROR_CHECK(err, "DHCPC stop error"); } err = esp_netif_set_ip_info(this->eth_netif_, &info); ESPHL_ERROR_CHECK(err, "DHCPC set IP info error"); if (this->manual_ip_.has_value()) { if (this->manual_ip_->dns1.is_set()) { ip_addr_t d; d = this->manual_ip_->dns1; dns_setserver(0, &d); } if (this->manual_ip_->dns2.is_set()) { ip_addr_t d; d = this->manual_ip_->dns2; dns_setserver(1, &d); } } else { err = esp_netif_dhcpc_start(this->eth_netif_); if (err != ESP_ERR_ESP_NETIF_DHCP_ALREADY_STARTED) { ESPHL_ERROR_CHECK(err, "DHCPC start error"); } } #if USE_NETWORK_IPV6 err = esp_netif_create_ip6_linklocal(this->eth_netif_); if (err != ESP_OK) { ESPHL_ERROR_CHECK(err, "Enable IPv6 link local failed"); } #endif /* USE_NETWORK_IPV6 */ this->connect_begin_ = millis(); this->status_set_warning(); } bool EthernetComponent::is_connected() { return this->state_ == EthernetComponentState::CONNECTED; } void EthernetComponent::dump_connect_params_() { esp_netif_ip_info_t ip; esp_netif_get_ip_info(this->eth_netif_, &ip); ESP_LOGCONFIG(TAG, " IP Address: %s", network::IPAddress(&ip.ip).str().c_str()); ESP_LOGCONFIG(TAG, " Hostname: '%s'", App.get_name().c_str()); ESP_LOGCONFIG(TAG, " Subnet: %s", network::IPAddress(&ip.netmask).str().c_str()); ESP_LOGCONFIG(TAG, " Gateway: %s", network::IPAddress(&ip.gw).str().c_str()); const ip_addr_t *dns_ip1 = dns_getserver(0); const ip_addr_t *dns_ip2 = dns_getserver(1); ESP_LOGCONFIG(TAG, " DNS1: %s", network::IPAddress(dns_ip1).str().c_str()); ESP_LOGCONFIG(TAG, " DNS2: %s", network::IPAddress(dns_ip2).str().c_str()); #if USE_NETWORK_IPV6 struct esp_ip6_addr if_ip6s[CONFIG_LWIP_IPV6_NUM_ADDRESSES]; uint8_t count = 0; count = esp_netif_get_all_ip6(this->eth_netif_, if_ip6s); assert(count <= CONFIG_LWIP_IPV6_NUM_ADDRESSES); for (int i = 0; i < count; i++) { ESP_LOGCONFIG(TAG, " IPv6: " IPV6STR, IPV62STR(if_ip6s[i])); } #endif /* USE_NETWORK_IPV6 */ ESP_LOGCONFIG(TAG, " MAC Address: %s", this->get_eth_mac_address_pretty().c_str()); ESP_LOGCONFIG(TAG, " Is Full Duplex: %s", YESNO(this->get_duplex_mode() == ETH_DUPLEX_FULL)); ESP_LOGCONFIG(TAG, " Link Speed: %u", this->get_link_speed() == ETH_SPEED_100M ? 100 : 10); } #ifdef USE_ETHERNET_SPI void EthernetComponent::set_clk_pin(uint8_t clk_pin) { this->clk_pin_ = clk_pin; } void EthernetComponent::set_miso_pin(uint8_t miso_pin) { this->miso_pin_ = miso_pin; } void EthernetComponent::set_mosi_pin(uint8_t mosi_pin) { this->mosi_pin_ = mosi_pin; } void EthernetComponent::set_cs_pin(uint8_t cs_pin) { this->cs_pin_ = cs_pin; } void EthernetComponent::set_interrupt_pin(uint8_t interrupt_pin) { this->interrupt_pin_ = interrupt_pin; } void EthernetComponent::set_reset_pin(uint8_t reset_pin) { this->reset_pin_ = reset_pin; } void EthernetComponent::set_clock_speed(int clock_speed) { this->clock_speed_ = clock_speed; } #else void EthernetComponent::set_phy_addr(uint8_t phy_addr) { this->phy_addr_ = phy_addr; } void EthernetComponent::set_power_pin(int power_pin) { this->power_pin_ = power_pin; } void EthernetComponent::set_mdc_pin(uint8_t mdc_pin) { this->mdc_pin_ = mdc_pin; } void EthernetComponent::set_mdio_pin(uint8_t mdio_pin) { this->mdio_pin_ = mdio_pin; } void EthernetComponent::set_clk_mode(emac_rmii_clock_mode_t clk_mode, emac_rmii_clock_gpio_t clk_gpio) { this->clk_mode_ = clk_mode; this->clk_gpio_ = clk_gpio; } void EthernetComponent::add_phy_register(PHYRegister register_value) { this->phy_registers_.push_back(register_value); } #endif void EthernetComponent::set_type(EthernetType type) { this->type_ = type; } void EthernetComponent::set_manual_ip(const ManualIP &manual_ip) { this->manual_ip_ = manual_ip; } std::string EthernetComponent::get_use_address() const { if (this->use_address_.empty()) { return App.get_name() + ".local"; } return this->use_address_; } void EthernetComponent::set_use_address(const std::string &use_address) { this->use_address_ = use_address; } void EthernetComponent::get_eth_mac_address_raw(uint8_t *mac) { esp_err_t err; err = esp_eth_ioctl(this->eth_handle_, ETH_CMD_G_MAC_ADDR, mac); ESPHL_ERROR_CHECK(err, "ETH_CMD_G_MAC error"); } std::string EthernetComponent::get_eth_mac_address_pretty() { uint8_t mac[6]; get_mac_address_raw(mac); return str_snprintf("%02X:%02X:%02X:%02X:%02X:%02X", 17, mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]); } eth_duplex_t EthernetComponent::get_duplex_mode() { esp_err_t err; eth_duplex_t duplex_mode; err = esp_eth_ioctl(this->eth_handle_, ETH_CMD_G_DUPLEX_MODE, &duplex_mode); ESPHL_ERROR_CHECK_RET(err, "ETH_CMD_G_DUPLEX_MODE error", ETH_DUPLEX_HALF); return duplex_mode; } eth_speed_t EthernetComponent::get_link_speed() { esp_err_t err; eth_speed_t speed; err = esp_eth_ioctl(this->eth_handle_, ETH_CMD_G_SPEED, &speed); ESPHL_ERROR_CHECK_RET(err, "ETH_CMD_G_SPEED error", ETH_SPEED_10M); return speed; } bool EthernetComponent::powerdown() { ESP_LOGI(TAG, "Powering down ethernet PHY"); if (this->phy_ == nullptr) { ESP_LOGE(TAG, "Ethernet PHY not assigned"); return false; } this->connected_ = false; this->started_ = false; if (this->phy_->pwrctl(this->phy_, false) != ESP_OK) { ESP_LOGE(TAG, "Error powering down ethernet PHY"); return false; } return true; } #ifndef USE_ETHERNET_SPI constexpr uint8_t KSZ80XX_PC2R_REG_ADDR = 0x1F; void EthernetComponent::ksz8081_set_clock_reference_(esp_eth_mac_t *mac) { esp_err_t err; uint32_t phy_control_2; err = mac->read_phy_reg(mac, this->phy_addr_, KSZ80XX_PC2R_REG_ADDR, &(phy_control_2)); ESPHL_ERROR_CHECK(err, "Read PHY Control 2 failed"); ESP_LOGVV(TAG, "KSZ8081 PHY Control 2: %s", format_hex_pretty((u_int8_t *) &phy_control_2, 2).c_str()); /* * Bit 7 is `RMII Reference Clock Select`. Default is `0`. * KSZ8081RNA: * 0 - clock input to XI (Pin 8) is 25 MHz for RMII - 25 MHz clock mode. * 1 - clock input to XI (Pin 8) is 50 MHz for RMII - 50 MHz clock mode. * KSZ8081RND: * 0 - clock input to XI (Pin 8) is 50 MHz for RMII - 50 MHz clock mode. * 1 - clock input to XI (Pin 8) is 25 MHz (driven clock only, not a crystal) for RMII - 25 MHz clock mode. */ if ((phy_control_2 & (1 << 7)) != (1 << 7)) { phy_control_2 |= 1 << 7; err = mac->write_phy_reg(mac, this->phy_addr_, KSZ80XX_PC2R_REG_ADDR, phy_control_2); ESPHL_ERROR_CHECK(err, "Write PHY Control 2 failed"); err = mac->read_phy_reg(mac, this->phy_addr_, KSZ80XX_PC2R_REG_ADDR, &(phy_control_2)); ESPHL_ERROR_CHECK(err, "Read PHY Control 2 failed"); ESP_LOGVV(TAG, "KSZ8081 PHY Control 2: %s", format_hex_pretty((u_int8_t *) &phy_control_2, 2).c_str()); } } void EthernetComponent::write_phy_register_(esp_eth_mac_t *mac, PHYRegister register_data) { esp_err_t err; constexpr uint8_t eth_phy_psr_reg_addr = 0x1F; if (this->type_ == ETHERNET_TYPE_RTL8201 && register_data.page) { ESP_LOGD(TAG, "Select PHY Register Page: 0x%02" PRIX32, register_data.page); err = mac->write_phy_reg(mac, this->phy_addr_, eth_phy_psr_reg_addr, register_data.page); ESPHL_ERROR_CHECK(err, "Select PHY Register page failed"); } ESP_LOGD(TAG, "Writing to PHY Register Address: 0x%02" PRIX32, register_data.address); ESP_LOGD(TAG, "Writing to PHY Register Value: 0x%04" PRIX32, register_data.value); err = mac->write_phy_reg(mac, this->phy_addr_, register_data.address, register_data.value); ESPHL_ERROR_CHECK(err, "Writing PHY Register failed"); if (this->type_ == ETHERNET_TYPE_RTL8201 && register_data.page) { ESP_LOGD(TAG, "Select PHY Register Page 0x00"); err = mac->write_phy_reg(mac, this->phy_addr_, eth_phy_psr_reg_addr, 0x0); ESPHL_ERROR_CHECK(err, "Select PHY Register Page 0 failed"); } } #endif } // namespace ethernet } // namespace esphome #endif // USE_ESP32