import esphome.codegen as cg import esphome.config_validation as cv from esphome.components import sensor, modbus from esphome.const import ( CONF_ACTIVE_POWER, CONF_CURRENT, CONF_FREQUENCY, CONF_ID, CONF_PHASE_A, CONF_PHASE_B, CONF_PHASE_C, CONF_REACTIVE_POWER, CONF_VOLTAGE, DEVICE_CLASS_CURRENT, DEVICE_CLASS_ENERGY, DEVICE_CLASS_POWER, DEVICE_CLASS_VOLTAGE, ICON_CURRENT_AC, STATE_CLASS_MEASUREMENT, STATE_CLASS_TOTAL_INCREASING, UNIT_AMPERE, UNIT_DEGREES, UNIT_HERTZ, UNIT_MINUTE, UNIT_VOLT, UNIT_VOLT_AMPS_REACTIVE, UNIT_WATT, ) CONF_ENERGY_PRODUCTION_DAY = "energy_production_day" CONF_TOTAL_ENERGY_PRODUCTION = "total_energy_production" CONF_TOTAL_GENERATION_TIME = "total_generation_time" CONF_TODAY_GENERATION_TIME = "today_generation_time" CONF_PV1 = "pv1" CONF_PV2 = "pv2" UNIT_KILOWATT_HOURS = "kWh" UNIT_HOURS = "h" UNIT_KOHM = "kΩ" UNIT_MILLIAMPERE = "mA" CONF_INVERTER_MODULE_TEMP = "inverter_module_temp" CONF_INVERTER_INNER_TEMP = "inverter_inner_temp" CONF_INVERTER_BUS_VOLTAGE = "inverter_bus_voltage" CONF_VOLTAGE_SAMPLED_BY_SECONDARY_CPU = "voltage_sampled_by_secondary_cpu" CONF_INSULATION_OF_P_TO_GROUND = "insulation_of_p_to_ground" CONF_INSULATION_OF_PV_N_TO_GROUND = "insulation_of_pv_n_to_ground" CONF_GFCI_VALUE = "gfci_value" CONF_DCI_OF_R = "dci_of_r" CONF_DCI_OF_S = "dci_of_s" CONF_DCI_OF_T = "dci_of_t" AUTO_LOAD = ["modbus"] CODEOWNERS = ["@sourabhjaiswal"] havells_solar_ns = cg.esphome_ns.namespace("havells_solar") HavellsSolar = havells_solar_ns.class_( "HavellsSolar", cg.PollingComponent, modbus.ModbusDevice ) PHASE_SENSORS = { CONF_VOLTAGE: sensor.sensor_schema( unit_of_measurement=UNIT_VOLT, accuracy_decimals=2, device_class=DEVICE_CLASS_VOLTAGE, ), CONF_CURRENT: sensor.sensor_schema( unit_of_measurement=UNIT_AMPERE, accuracy_decimals=2, device_class=DEVICE_CLASS_CURRENT, state_class=STATE_CLASS_MEASUREMENT, ), } PV_SENSORS = { CONF_VOLTAGE: sensor.sensor_schema( unit_of_measurement=UNIT_VOLT, accuracy_decimals=2, device_class=DEVICE_CLASS_VOLTAGE, ), CONF_CURRENT: sensor.sensor_schema( unit_of_measurement=UNIT_AMPERE, accuracy_decimals=2, device_class=DEVICE_CLASS_CURRENT, state_class=STATE_CLASS_MEASUREMENT, ), CONF_ACTIVE_POWER: sensor.sensor_schema( unit_of_measurement=UNIT_WATT, accuracy_decimals=0, device_class=DEVICE_CLASS_POWER, state_class=STATE_CLASS_MEASUREMENT, ), CONF_VOLTAGE_SAMPLED_BY_SECONDARY_CPU: sensor.sensor_schema( unit_of_measurement=UNIT_VOLT, accuracy_decimals=0, device_class=DEVICE_CLASS_VOLTAGE, state_class=STATE_CLASS_MEASUREMENT, ), CONF_INSULATION_OF_P_TO_GROUND: sensor.sensor_schema( unit_of_measurement=UNIT_KOHM, accuracy_decimals=0, state_class=STATE_CLASS_MEASUREMENT, ), } PHASE_SCHEMA = cv.Schema( {cv.Optional(sensor): schema for sensor, schema in PHASE_SENSORS.items()} ) PV_SCHEMA = cv.Schema( {cv.Optional(sensor): schema for sensor, schema in PV_SENSORS.items()} ) CONFIG_SCHEMA = ( cv.Schema( { cv.GenerateID(): cv.declare_id(HavellsSolar), cv.Optional(CONF_PHASE_A): PHASE_SCHEMA, cv.Optional(CONF_PHASE_B): PHASE_SCHEMA, cv.Optional(CONF_PHASE_C): PHASE_SCHEMA, cv.Optional(CONF_PV1): PV_SCHEMA, cv.Optional(CONF_PV2): PV_SCHEMA, cv.Optional(CONF_FREQUENCY): sensor.sensor_schema( unit_of_measurement=UNIT_HERTZ, icon=ICON_CURRENT_AC, accuracy_decimals=2, state_class=STATE_CLASS_MEASUREMENT, ), cv.Optional(CONF_ACTIVE_POWER): sensor.sensor_schema( unit_of_measurement=UNIT_WATT, accuracy_decimals=0, device_class=DEVICE_CLASS_POWER, state_class=STATE_CLASS_MEASUREMENT, ), cv.Optional(CONF_REACTIVE_POWER): sensor.sensor_schema( unit_of_measurement=UNIT_VOLT_AMPS_REACTIVE, accuracy_decimals=2, state_class=STATE_CLASS_MEASUREMENT, ), cv.Optional(CONF_ENERGY_PRODUCTION_DAY): sensor.sensor_schema( unit_of_measurement=UNIT_KILOWATT_HOURS, accuracy_decimals=2, device_class=DEVICE_CLASS_ENERGY, state_class=STATE_CLASS_TOTAL_INCREASING, ), cv.Optional(CONF_TOTAL_ENERGY_PRODUCTION): sensor.sensor_schema( unit_of_measurement=UNIT_KILOWATT_HOURS, accuracy_decimals=0, device_class=DEVICE_CLASS_ENERGY, state_class=STATE_CLASS_TOTAL_INCREASING, ), cv.Optional(CONF_TOTAL_GENERATION_TIME): sensor.sensor_schema( unit_of_measurement=UNIT_HOURS, accuracy_decimals=0, state_class=STATE_CLASS_TOTAL_INCREASING, ), cv.Optional(CONF_TODAY_GENERATION_TIME): sensor.sensor_schema( unit_of_measurement=UNIT_MINUTE, accuracy_decimals=0, state_class=STATE_CLASS_TOTAL_INCREASING, ), cv.Optional(CONF_INVERTER_MODULE_TEMP): sensor.sensor_schema( unit_of_measurement=UNIT_DEGREES, accuracy_decimals=0, state_class=STATE_CLASS_MEASUREMENT, ), cv.Optional(CONF_INVERTER_INNER_TEMP): sensor.sensor_schema( unit_of_measurement=UNIT_DEGREES, accuracy_decimals=0, state_class=STATE_CLASS_MEASUREMENT, ), cv.Optional(CONF_INVERTER_BUS_VOLTAGE): sensor.sensor_schema( unit_of_measurement=UNIT_VOLT, accuracy_decimals=0, state_class=STATE_CLASS_MEASUREMENT, ), cv.Optional(CONF_INSULATION_OF_PV_N_TO_GROUND): sensor.sensor_schema( unit_of_measurement=UNIT_KOHM, accuracy_decimals=0, state_class=STATE_CLASS_MEASUREMENT, ), cv.Optional(CONF_GFCI_VALUE): sensor.sensor_schema( unit_of_measurement=UNIT_MILLIAMPERE, accuracy_decimals=0, state_class=STATE_CLASS_MEASUREMENT, ), cv.Optional(CONF_DCI_OF_R): sensor.sensor_schema( unit_of_measurement=UNIT_MILLIAMPERE, accuracy_decimals=0, state_class=STATE_CLASS_MEASUREMENT, ), cv.Optional(CONF_DCI_OF_S): sensor.sensor_schema( unit_of_measurement=UNIT_MILLIAMPERE, accuracy_decimals=0, state_class=STATE_CLASS_MEASUREMENT, ), cv.Optional(CONF_DCI_OF_T): sensor.sensor_schema( unit_of_measurement=UNIT_MILLIAMPERE, accuracy_decimals=0, state_class=STATE_CLASS_MEASUREMENT, ), } ) .extend(cv.polling_component_schema("10s")) .extend(modbus.modbus_device_schema(0x01)) ) async def to_code(config): var = cg.new_Pvariable(config[CONF_ID]) await cg.register_component(var, config) await modbus.register_modbus_device(var, config) if CONF_FREQUENCY in config: sens = await sensor.new_sensor(config[CONF_FREQUENCY]) cg.add(var.set_frequency_sensor(sens)) if CONF_ACTIVE_POWER in config: sens = await sensor.new_sensor(config[CONF_ACTIVE_POWER]) cg.add(var.set_active_power_sensor(sens)) if CONF_REACTIVE_POWER in config: sens = await sensor.new_sensor(config[CONF_REACTIVE_POWER]) cg.add(var.set_reactive_power_sensor(sens)) if CONF_ENERGY_PRODUCTION_DAY in config: sens = await sensor.new_sensor(config[CONF_ENERGY_PRODUCTION_DAY]) cg.add(var.set_today_production_sensor(sens)) if CONF_TOTAL_ENERGY_PRODUCTION in config: sens = await sensor.new_sensor(config[CONF_TOTAL_ENERGY_PRODUCTION]) cg.add(var.set_total_energy_production_sensor(sens)) if CONF_TOTAL_GENERATION_TIME in config: sens = await sensor.new_sensor(config[CONF_TOTAL_GENERATION_TIME]) cg.add(var.set_total_generation_time_sensor(sens)) if CONF_TODAY_GENERATION_TIME in config: sens = await sensor.new_sensor(config[CONF_TODAY_GENERATION_TIME]) cg.add(var.set_today_generation_time_sensor(sens)) if CONF_INVERTER_MODULE_TEMP in config: sens = await sensor.new_sensor(config[CONF_INVERTER_MODULE_TEMP]) cg.add(var.set_inverter_module_temp_sensor(sens)) if CONF_INVERTER_INNER_TEMP in config: sens = await sensor.new_sensor(config[CONF_INVERTER_INNER_TEMP]) cg.add(var.set_inverter_inner_temp_sensor(sens)) if CONF_INVERTER_BUS_VOLTAGE in config: sens = await sensor.new_sensor(config[CONF_INVERTER_BUS_VOLTAGE]) cg.add(var.set_inverter_bus_voltage_sensor(sens)) if CONF_INSULATION_OF_PV_N_TO_GROUND in config: sens = await sensor.new_sensor(config[CONF_INSULATION_OF_PV_N_TO_GROUND]) cg.add(var.set_insulation_pv_n_to_ground_sensor(sens)) if CONF_GFCI_VALUE in config: sens = await sensor.new_sensor(config[CONF_GFCI_VALUE]) cg.add(var.set_gfci_value_sensor(sens)) if CONF_DCI_OF_R in config: sens = await sensor.new_sensor(config[CONF_DCI_OF_R]) cg.add(var.set_dci_of_r_sensor(sens)) if CONF_DCI_OF_S in config: sens = await sensor.new_sensor(config[CONF_DCI_OF_S]) cg.add(var.set_dci_of_s_sensor(sens)) if CONF_DCI_OF_T in config: sens = await sensor.new_sensor(config[CONF_DCI_OF_T]) cg.add(var.set_dci_of_t_sensor(sens)) for i, phase in enumerate([CONF_PHASE_A, CONF_PHASE_B, CONF_PHASE_C]): if phase not in config: continue phase_config = config[phase] for sensor_type in PHASE_SENSORS: if sensor_type in phase_config: sens = await sensor.new_sensor(phase_config[sensor_type]) cg.add(getattr(var, f"set_{sensor_type}_sensor")(i, sens)) for i, pv in enumerate([CONF_PV1, CONF_PV2]): if pv not in config: continue pv_config = config[pv] for sensor_type in pv_config: if sensor_type in pv_config: sens = await sensor.new_sensor(pv_config[sensor_type]) cg.add(getattr(var, f"set_{sensor_type}_sensor_pv")(i, sens))