#include "havells_solar.h" #include "havells_solar_registers.h" #include "esphome/core/log.h" namespace esphome { namespace havells_solar { static const char *const TAG = "havells_solar"; static const uint8_t MODBUS_CMD_READ_IN_REGISTERS = 0x03; static const uint8_t MODBUS_REGISTER_COUNT = 48; // 48 x 16-bit registers void HavellsSolar::on_modbus_data(const std::vector &data) { if (data.size() < MODBUS_REGISTER_COUNT * 2) { ESP_LOGW(TAG, "Invalid size for HavellsSolar!"); return; } /* Usage: returns the float value of 1 register read by modbus Arg1: Register address * number of bytes per register Arg2: Multiplier for final register value */ auto havells_solar_get_2_registers = [&](size_t i, float unit) -> float { uint32_t temp = encode_uint32(data[i], data[i + 1], data[i + 2], data[i + 3]); return temp * unit; }; /* Usage: returns the float value of 2 registers read by modbus Arg1: Register address * number of bytes per register Arg2: Multiplier for final register value */ auto havells_solar_get_1_register = [&](size_t i, float unit) -> float { uint16_t temp = encode_uint16(data[i], data[i + 1]); return temp * unit; }; for (uint8_t i = 0; i < 3; i++) { auto phase = this->phases_[i]; if (!phase.setup) continue; float voltage = havells_solar_get_1_register(HAVELLS_PHASE_1_VOLTAGE * 2 + (i * 4), ONE_DEC_UNIT); float current = havells_solar_get_1_register(HAVELLS_PHASE_1_CURRENT * 2 + (i * 4), TWO_DEC_UNIT); if (phase.voltage_sensor_ != nullptr) phase.voltage_sensor_->publish_state(voltage); if (phase.current_sensor_ != nullptr) phase.current_sensor_->publish_state(current); } for (uint8_t i = 0; i < 2; i++) { auto pv = this->pvs_[i]; if (!pv.setup) continue; float voltage = havells_solar_get_1_register(HAVELLS_PV_1_VOLTAGE * 2 + (i * 4), ONE_DEC_UNIT); float current = havells_solar_get_1_register(HAVELLS_PV_1_CURRENT * 2 + (i * 4), TWO_DEC_UNIT); float active_power = havells_solar_get_1_register(HAVELLS_PV_1_POWER * 2 + (i * 2), MULTIPLY_TEN_UNIT); float voltage_sampled_by_secondary_cpu = havells_solar_get_1_register(HAVELLS_PV1_VOLTAGE_SAMPLED_BY_SECONDARY_CPU * 2 + (i * 2), ONE_DEC_UNIT); float insulation_of_p_to_ground = havells_solar_get_1_register(HAVELLS_PV1_INSULATION_OF_P_TO_GROUND * 2 + (i * 2), NO_DEC_UNIT); if (pv.voltage_sensor_ != nullptr) pv.voltage_sensor_->publish_state(voltage); if (pv.current_sensor_ != nullptr) pv.current_sensor_->publish_state(current); if (pv.active_power_sensor_ != nullptr) pv.active_power_sensor_->publish_state(active_power); if (pv.voltage_sampled_by_secondary_cpu_sensor_ != nullptr) pv.voltage_sampled_by_secondary_cpu_sensor_->publish_state(voltage_sampled_by_secondary_cpu); if (pv.insulation_of_p_to_ground_sensor_ != nullptr) pv.insulation_of_p_to_ground_sensor_->publish_state(insulation_of_p_to_ground); } float frequency = havells_solar_get_1_register(HAVELLS_GRID_FREQUENCY * 2, TWO_DEC_UNIT); float active_power = havells_solar_get_1_register(HAVELLS_SYSTEM_ACTIVE_POWER * 2, MULTIPLY_TEN_UNIT); float reactive_power = havells_solar_get_1_register(HAVELLS_SYSTEM_REACTIVE_POWER * 2, TWO_DEC_UNIT); float today_production = havells_solar_get_1_register(HAVELLS_TODAY_PRODUCTION * 2, TWO_DEC_UNIT); float total_energy_production = havells_solar_get_2_registers(HAVELLS_TOTAL_ENERGY_PRODUCTION * 2, NO_DEC_UNIT); float total_generation_time = havells_solar_get_2_registers(HAVELLS_TOTAL_GENERATION_TIME * 2, NO_DEC_UNIT); float today_generation_time = havells_solar_get_1_register(HAVELLS_TODAY_GENERATION_TIME * 2, NO_DEC_UNIT); float inverter_module_temp = havells_solar_get_1_register(HAVELLS_INVERTER_MODULE_TEMP * 2, NO_DEC_UNIT); float inverter_inner_temp = havells_solar_get_1_register(HAVELLS_INVERTER_INNER_TEMP * 2, NO_DEC_UNIT); float inverter_bus_voltage = havells_solar_get_1_register(HAVELLS_INVERTER_BUS_VOLTAGE * 2, NO_DEC_UNIT); float insulation_pv_n_to_ground = havells_solar_get_1_register(HAVELLS_INSULATION_OF_PV_N_TO_GROUND * 2, NO_DEC_UNIT); float gfci_value = havells_solar_get_1_register(HAVELLS_GFCI_VALUE * 2, NO_DEC_UNIT); float dci_of_r = havells_solar_get_1_register(HAVELLS_DCI_OF_R * 2, NO_DEC_UNIT); float dci_of_s = havells_solar_get_1_register(HAVELLS_DCI_OF_S * 2, NO_DEC_UNIT); float dci_of_t = havells_solar_get_1_register(HAVELLS_DCI_OF_T * 2, NO_DEC_UNIT); if (this->frequency_sensor_ != nullptr) this->frequency_sensor_->publish_state(frequency); if (this->active_power_sensor_ != nullptr) this->active_power_sensor_->publish_state(active_power); if (this->reactive_power_sensor_ != nullptr) this->reactive_power_sensor_->publish_state(reactive_power); if (this->today_production_sensor_ != nullptr) this->today_production_sensor_->publish_state(today_production); if (this->total_energy_production_sensor_ != nullptr) this->total_energy_production_sensor_->publish_state(total_energy_production); if (this->total_generation_time_sensor_ != nullptr) this->total_generation_time_sensor_->publish_state(total_generation_time); if (this->today_generation_time_sensor_ != nullptr) this->today_generation_time_sensor_->publish_state(today_generation_time); if (this->inverter_module_temp_sensor_ != nullptr) this->inverter_module_temp_sensor_->publish_state(inverter_module_temp); if (this->inverter_inner_temp_sensor_ != nullptr) this->inverter_inner_temp_sensor_->publish_state(inverter_inner_temp); if (this->inverter_bus_voltage_sensor_ != nullptr) this->inverter_bus_voltage_sensor_->publish_state(inverter_bus_voltage); if (this->insulation_pv_n_to_ground_sensor_ != nullptr) this->insulation_pv_n_to_ground_sensor_->publish_state(insulation_pv_n_to_ground); if (this->gfci_value_sensor_ != nullptr) this->gfci_value_sensor_->publish_state(gfci_value); if (this->dci_of_r_sensor_ != nullptr) this->dci_of_r_sensor_->publish_state(dci_of_r); if (this->dci_of_s_sensor_ != nullptr) this->dci_of_s_sensor_->publish_state(dci_of_s); if (this->dci_of_t_sensor_ != nullptr) this->dci_of_t_sensor_->publish_state(dci_of_t); } void HavellsSolar::update() { this->send(MODBUS_CMD_READ_IN_REGISTERS, 0, MODBUS_REGISTER_COUNT); } void HavellsSolar::dump_config() { ESP_LOGCONFIG(TAG, "HAVELLS Solar:"); ESP_LOGCONFIG(TAG, " Address: 0x%02X", this->address_); for (uint8_t i = 0; i < 3; i++) { auto phase = this->phases_[i]; if (!phase.setup) continue; ESP_LOGCONFIG(TAG, " Phase %c", i + 'A'); LOG_SENSOR(" ", "Voltage", phase.voltage_sensor_); LOG_SENSOR(" ", "Current", phase.current_sensor_); } for (uint8_t i = 0; i < 2; i++) { auto pv = this->pvs_[i]; if (!pv.setup) continue; ESP_LOGCONFIG(TAG, " PV %d", i + 1); LOG_SENSOR(" ", "Voltage", pv.voltage_sensor_); LOG_SENSOR(" ", "Current", pv.current_sensor_); LOG_SENSOR(" ", "Active Power", pv.active_power_sensor_); LOG_SENSOR(" ", "Voltage Sampled By Secondary CPU", pv.voltage_sampled_by_secondary_cpu_sensor_); LOG_SENSOR(" ", "Insulation Of PV+ To Ground", pv.insulation_of_p_to_ground_sensor_); } LOG_SENSOR(" ", "Frequency", this->frequency_sensor_); LOG_SENSOR(" ", "Active Power", this->active_power_sensor_); LOG_SENSOR(" ", "Reactive Power", this->reactive_power_sensor_); LOG_SENSOR(" ", "Today Generation", this->today_production_sensor_); LOG_SENSOR(" ", "Total Generation", this->total_energy_production_sensor_); LOG_SENSOR(" ", "Total Generation Time", this->total_generation_time_sensor_); LOG_SENSOR(" ", "Today Generation Time", this->today_generation_time_sensor_); LOG_SENSOR(" ", "Inverter Module Temp", this->inverter_module_temp_sensor_); LOG_SENSOR(" ", "Inverter Inner Temp", this->inverter_inner_temp_sensor_); LOG_SENSOR(" ", "Inverter Bus Voltage", this->inverter_bus_voltage_sensor_); LOG_SENSOR(" ", "Insulation Of PV- To Ground", this->insulation_pv_n_to_ground_sensor_); LOG_SENSOR(" ", "GFCI Value", this->gfci_value_sensor_); LOG_SENSOR(" ", "DCI Of R", this->dci_of_r_sensor_); LOG_SENSOR(" ", "DCI Of S", this->dci_of_s_sensor_); LOG_SENSOR(" ", "DCI Of T", this->dci_of_t_sensor_); } } // namespace havells_solar } // namespace esphome