#ifdef USE_ESP32 #include "esp32_ble_tracker.h" #include "esphome/core/application.h" #include "esphome/core/defines.h" #include "esphome/core/hal.h" #include "esphome/core/helpers.h" #include "esphome/core/log.h" #include #include #include #include #include #include #include #include #ifdef USE_OTA #include "esphome/components/ota/ota_component.h" #endif #ifdef USE_ARDUINO #include #endif // bt_trace.h #undef TAG namespace esphome { namespace esp32_ble_tracker { static const char *const TAG = "esp32_ble_tracker"; ESP32BLETracker *global_esp32_ble_tracker = nullptr; // NOLINT(cppcoreguidelines-avoid-non-const-global-variables) uint64_t ble_addr_to_uint64(const esp_bd_addr_t address) { uint64_t u = 0; u |= uint64_t(address[0] & 0xFF) << 40; u |= uint64_t(address[1] & 0xFF) << 32; u |= uint64_t(address[2] & 0xFF) << 24; u |= uint64_t(address[3] & 0xFF) << 16; u |= uint64_t(address[4] & 0xFF) << 8; u |= uint64_t(address[5] & 0xFF) << 0; return u; } float ESP32BLETracker::get_setup_priority() const { return setup_priority::BLUETOOTH; } void ESP32BLETracker::setup() { global_esp32_ble_tracker = this; this->scan_result_lock_ = xSemaphoreCreateMutex(); this->scan_end_lock_ = xSemaphoreCreateMutex(); this->scanner_idle_ = true; if (!ESP32BLETracker::ble_setup()) { this->mark_failed(); return; } #ifdef USE_OTA ota::global_ota_component->add_on_state_callback([this](ota::OTAState state, float progress, uint8_t error) { if (state == ota::OTA_STARTED) { this->stop_scan(); } }); #endif if (this->scan_continuous_) { this->start_scan_(true); } } void ESP32BLETracker::loop() { BLEEvent *ble_event = this->ble_events_.pop(); while (ble_event != nullptr) { if (ble_event->type_) { this->real_gattc_event_handler_(ble_event->event_.gattc.gattc_event, ble_event->event_.gattc.gattc_if, &ble_event->event_.gattc.gattc_param); } else { this->real_gap_event_handler_(ble_event->event_.gap.gap_event, &ble_event->event_.gap.gap_param); } delete ble_event; // NOLINT(cppcoreguidelines-owning-memory) ble_event = this->ble_events_.pop(); } if (this->scanner_idle_) { return; } bool connecting = false; for (auto *client : this->clients_) { if (client->state() == ClientState::CONNECTING || client->state() == ClientState::DISCOVERED) connecting = true; } if (!connecting && xSemaphoreTake(this->scan_end_lock_, 0L)) { xSemaphoreGive(this->scan_end_lock_); if (this->scan_continuous_) { this->start_scan_(false); } else if (xSemaphoreTake(this->scan_end_lock_, 0L) && !this->scanner_idle_) { xSemaphoreGive(this->scan_end_lock_); this->end_of_scan_(); return; } } if (xSemaphoreTake(this->scan_result_lock_, 5L / portTICK_PERIOD_MS)) { uint32_t index = this->scan_result_index_; xSemaphoreGive(this->scan_result_lock_); if (index >= 16) { ESP_LOGW(TAG, "Too many BLE events to process. Some devices may not show up."); } for (size_t i = 0; i < index; i++) { ESPBTDevice device; device.parse_scan_rst(this->scan_result_buffer_[i]); bool found = false; for (auto *listener : this->listeners_) { if (listener->parse_device(device)) found = true; } for (auto *client : this->clients_) { if (client->parse_device(device)) { found = true; if (client->state() == ClientState::DISCOVERED) { esp_ble_gap_stop_scanning(); #ifdef USE_ARDUINO constexpr TickType_t block_time = 10L / portTICK_PERIOD_MS; #else constexpr TickType_t block_time = 0L; // PR #3594 #endif if (xSemaphoreTake(this->scan_end_lock_, block_time)) { xSemaphoreGive(this->scan_end_lock_); } } } } if (!found) { this->print_bt_device_info(device); } } if (xSemaphoreTake(this->scan_result_lock_, 10L / portTICK_PERIOD_MS)) { this->scan_result_index_ = 0; xSemaphoreGive(this->scan_result_lock_); } } if (this->scan_set_param_failed_) { ESP_LOGE(TAG, "Scan set param failed: %d", this->scan_set_param_failed_); this->scan_set_param_failed_ = ESP_BT_STATUS_SUCCESS; } if (this->scan_start_failed_) { ESP_LOGE(TAG, "Scan start failed: %d", this->scan_start_failed_); this->scan_start_failed_ = ESP_BT_STATUS_SUCCESS; } } void ESP32BLETracker::start_scan() { if (xSemaphoreTake(this->scan_end_lock_, 0L)) { xSemaphoreGive(this->scan_end_lock_); this->start_scan_(true); } else { ESP_LOGW(TAG, "Scan requested when a scan is already in progress. Ignoring."); } } void ESP32BLETracker::stop_scan() { ESP_LOGD(TAG, "Stopping scan."); this->scan_continuous_ = false; esp_ble_gap_stop_scanning(); this->cancel_timeout("scan"); } bool ESP32BLETracker::ble_setup() { // Initialize non-volatile storage for the bluetooth controller esp_err_t err = nvs_flash_init(); if (err != ESP_OK) { ESP_LOGE(TAG, "nvs_flash_init failed: %d", err); return false; } #ifdef USE_ARDUINO if (!btStart()) { ESP_LOGE(TAG, "btStart failed: %d", esp_bt_controller_get_status()); return false; } #else if (esp_bt_controller_get_status() != ESP_BT_CONTROLLER_STATUS_ENABLED) { // start bt controller if (esp_bt_controller_get_status() == ESP_BT_CONTROLLER_STATUS_IDLE) { esp_bt_controller_config_t cfg = BT_CONTROLLER_INIT_CONFIG_DEFAULT(); err = esp_bt_controller_init(&cfg); if (err != ESP_OK) { ESP_LOGE(TAG, "esp_bt_controller_init failed: %s", esp_err_to_name(err)); return false; } while (esp_bt_controller_get_status() == ESP_BT_CONTROLLER_STATUS_IDLE) ; } if (esp_bt_controller_get_status() == ESP_BT_CONTROLLER_STATUS_INITED) { err = esp_bt_controller_enable(ESP_BT_MODE_BLE); if (err != ESP_OK) { ESP_LOGE(TAG, "esp_bt_controller_enable failed: %s", esp_err_to_name(err)); return false; } } if (esp_bt_controller_get_status() != ESP_BT_CONTROLLER_STATUS_ENABLED) { ESP_LOGE(TAG, "esp bt controller enable failed"); return false; } } #endif esp_bt_controller_mem_release(ESP_BT_MODE_CLASSIC_BT); err = esp_bluedroid_init(); if (err != ESP_OK) { ESP_LOGE(TAG, "esp_bluedroid_init failed: %d", err); return false; } err = esp_bluedroid_enable(); if (err != ESP_OK) { ESP_LOGE(TAG, "esp_bluedroid_enable failed: %d", err); return false; } err = esp_ble_gap_register_callback(ESP32BLETracker::gap_event_handler); if (err != ESP_OK) { ESP_LOGE(TAG, "esp_ble_gap_register_callback failed: %d", err); return false; } err = esp_ble_gattc_register_callback(ESP32BLETracker::gattc_event_handler); if (err != ESP_OK) { ESP_LOGE(TAG, "esp_ble_gattc_register_callback failed: %d", err); return false; } // Empty name esp_ble_gap_set_device_name(""); esp_ble_io_cap_t iocap = ESP_IO_CAP_NONE; err = esp_ble_gap_set_security_param(ESP_BLE_SM_IOCAP_MODE, &iocap, sizeof(uint8_t)); if (err != ESP_OK) { ESP_LOGE(TAG, "esp_ble_gap_set_security_param failed: %d", err); return false; } // BLE takes some time to be fully set up, 200ms should be more than enough delay(200); // NOLINT return true; } void ESP32BLETracker::start_scan_(bool first) { if (!xSemaphoreTake(this->scan_end_lock_, 0L)) { ESP_LOGW(TAG, "Cannot start scan!"); return; } ESP_LOGD(TAG, "Starting scan..."); if (!first) { for (auto *listener : this->listeners_) listener->on_scan_end(); } this->already_discovered_.clear(); this->scanner_idle_ = false; this->scan_params_.scan_type = this->scan_active_ ? BLE_SCAN_TYPE_ACTIVE : BLE_SCAN_TYPE_PASSIVE; this->scan_params_.own_addr_type = BLE_ADDR_TYPE_PUBLIC; this->scan_params_.scan_filter_policy = BLE_SCAN_FILTER_ALLOW_ALL; this->scan_params_.scan_interval = this->scan_interval_; this->scan_params_.scan_window = this->scan_window_; esp_ble_gap_set_scan_params(&this->scan_params_); esp_ble_gap_start_scanning(this->scan_duration_); this->set_timeout("scan", this->scan_duration_ * 2000, []() { ESP_LOGW(TAG, "ESP-IDF BLE scan never terminated, rebooting to restore BLE stack..."); App.reboot(); }); } void ESP32BLETracker::end_of_scan_() { if (!xSemaphoreTake(this->scan_end_lock_, 0L)) { ESP_LOGW(TAG, "Cannot clean up end of scan!"); return; } ESP_LOGD(TAG, "End of scan."); this->scanner_idle_ = true; this->already_discovered_.clear(); xSemaphoreGive(this->scan_end_lock_); this->cancel_timeout("scan"); for (auto *listener : this->listeners_) listener->on_scan_end(); } void ESP32BLETracker::register_client(ESPBTClient *client) { client->app_id = ++this->app_id_; this->clients_.push_back(client); } void ESP32BLETracker::gap_event_handler(esp_gap_ble_cb_event_t event, esp_ble_gap_cb_param_t *param) { BLEEvent *gap_event = new BLEEvent(event, param); // NOLINT(cppcoreguidelines-owning-memory) global_esp32_ble_tracker->ble_events_.push(gap_event); } // NOLINT(clang-analyzer-cplusplus.NewDeleteLeaks) void ESP32BLETracker::real_gap_event_handler_(esp_gap_ble_cb_event_t event, esp_ble_gap_cb_param_t *param) { switch (event) { case ESP_GAP_BLE_SCAN_RESULT_EVT: this->gap_scan_result_(param->scan_rst); break; case ESP_GAP_BLE_SCAN_PARAM_SET_COMPLETE_EVT: this->gap_scan_set_param_complete_(param->scan_param_cmpl); break; case ESP_GAP_BLE_SCAN_START_COMPLETE_EVT: this->gap_scan_start_complete_(param->scan_start_cmpl); break; case ESP_GAP_BLE_SCAN_STOP_COMPLETE_EVT: this->gap_scan_stop_complete_(param->scan_stop_cmpl); break; default: break; } for (auto *client : this->clients_) { client->gap_event_handler(event, param); } } void ESP32BLETracker::gap_scan_set_param_complete_(const esp_ble_gap_cb_param_t::ble_scan_param_cmpl_evt_param ¶m) { this->scan_set_param_failed_ = param.status; } void ESP32BLETracker::gap_scan_start_complete_(const esp_ble_gap_cb_param_t::ble_scan_start_cmpl_evt_param ¶m) { this->scan_start_failed_ = param.status; } void ESP32BLETracker::gap_scan_stop_complete_(const esp_ble_gap_cb_param_t::ble_scan_stop_cmpl_evt_param ¶m) { xSemaphoreGive(this->scan_end_lock_); } void ESP32BLETracker::gap_scan_result_(const esp_ble_gap_cb_param_t::ble_scan_result_evt_param ¶m) { if (param.search_evt == ESP_GAP_SEARCH_INQ_RES_EVT) { if (xSemaphoreTake(this->scan_result_lock_, 0L)) { if (this->scan_result_index_ < 16) { this->scan_result_buffer_[this->scan_result_index_++] = param; } xSemaphoreGive(this->scan_result_lock_); } } else if (param.search_evt == ESP_GAP_SEARCH_INQ_CMPL_EVT) { xSemaphoreGive(this->scan_end_lock_); } } void ESP32BLETracker::gattc_event_handler(esp_gattc_cb_event_t event, esp_gatt_if_t gattc_if, esp_ble_gattc_cb_param_t *param) { BLEEvent *gattc_event = new BLEEvent(event, gattc_if, param); // NOLINT(cppcoreguidelines-owning-memory) global_esp32_ble_tracker->ble_events_.push(gattc_event); } // NOLINT(clang-analyzer-cplusplus.NewDeleteLeaks) void ESP32BLETracker::real_gattc_event_handler_(esp_gattc_cb_event_t event, esp_gatt_if_t gattc_if, esp_ble_gattc_cb_param_t *param) { for (auto *client : this->clients_) { client->gattc_event_handler(event, gattc_if, param); } } ESPBTUUID::ESPBTUUID() : uuid_() {} ESPBTUUID ESPBTUUID::from_uint16(uint16_t uuid) { ESPBTUUID ret; ret.uuid_.len = ESP_UUID_LEN_16; ret.uuid_.uuid.uuid16 = uuid; return ret; } ESPBTUUID ESPBTUUID::from_uint32(uint32_t uuid) { ESPBTUUID ret; ret.uuid_.len = ESP_UUID_LEN_32; ret.uuid_.uuid.uuid32 = uuid; return ret; } ESPBTUUID ESPBTUUID::from_raw(const uint8_t *data) { ESPBTUUID ret; ret.uuid_.len = ESP_UUID_LEN_128; for (size_t i = 0; i < ESP_UUID_LEN_128; i++) ret.uuid_.uuid.uuid128[i] = data[i]; return ret; } ESPBTUUID ESPBTUUID::from_raw(const std::string &data) { ESPBTUUID ret; if (data.length() == 4) { ret.uuid_.len = ESP_UUID_LEN_16; ret.uuid_.uuid.uuid16 = 0; for (int i = 0; i < data.length();) { uint8_t msb = data.c_str()[i]; uint8_t lsb = data.c_str()[i + 1]; if (msb > '9') msb -= 7; if (lsb > '9') lsb -= 7; ret.uuid_.uuid.uuid16 += (((msb & 0x0F) << 4) | (lsb & 0x0F)) << (2 - i) * 4; i += 2; } } else if (data.length() == 8) { ret.uuid_.len = ESP_UUID_LEN_32; ret.uuid_.uuid.uuid32 = 0; for (int i = 0; i < data.length();) { uint8_t msb = data.c_str()[i]; uint8_t lsb = data.c_str()[i + 1]; if (msb > '9') msb -= 7; if (lsb > '9') lsb -= 7; ret.uuid_.uuid.uuid32 += (((msb & 0x0F) << 4) | (lsb & 0x0F)) << (6 - i) * 4; i += 2; } } else if (data.length() == 16) { // how we can have 16 byte length string reprezenting 128 bit uuid??? needs to be // investigated (lack of time) ret.uuid_.len = ESP_UUID_LEN_128; memcpy(ret.uuid_.uuid.uuid128, (uint8_t *) data.data(), 16); } else if (data.length() == 36) { // If the length of the string is 36 bytes then we will assume it is a long hex string in // UUID format. ret.uuid_.len = ESP_UUID_LEN_128; int n = 0; for (int i = 0; i < data.length();) { if (data.c_str()[i] == '-') i++; uint8_t msb = data.c_str()[i]; uint8_t lsb = data.c_str()[i + 1]; if (msb > '9') msb -= 7; if (lsb > '9') lsb -= 7; ret.uuid_.uuid.uuid128[15 - n++] = ((msb & 0x0F) << 4) | (lsb & 0x0F); i += 2; } } else { ESP_LOGE(TAG, "ERROR: UUID value not 2, 4, 16 or 36 bytes - %s", data.c_str()); } return ret; } ESPBTUUID ESPBTUUID::from_uuid(esp_bt_uuid_t uuid) { ESPBTUUID ret; ret.uuid_.len = uuid.len; ret.uuid_.uuid.uuid16 = uuid.uuid.uuid16; ret.uuid_.uuid.uuid32 = uuid.uuid.uuid32; for (size_t i = 0; i < ESP_UUID_LEN_128; i++) ret.uuid_.uuid.uuid128[i] = uuid.uuid.uuid128[i]; return ret; } ESPBTUUID ESPBTUUID::as_128bit() const { if (this->uuid_.len == ESP_UUID_LEN_128) { return *this; } uint8_t data[] = {0xFB, 0x34, 0x9B, 0x5F, 0x80, 0x00, 0x00, 0x80, 0x00, 0x10, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}; uint32_t uuid32; if (this->uuid_.len == ESP_UUID_LEN_32) { uuid32 = this->uuid_.uuid.uuid32; } else { uuid32 = this->uuid_.uuid.uuid16; } for (uint8_t i = 0; i < this->uuid_.len; i++) { data[12 + i] = ((uuid32 >> i * 8) & 0xFF); } return ESPBTUUID::from_raw(data); } bool ESPBTUUID::contains(uint8_t data1, uint8_t data2) const { if (this->uuid_.len == ESP_UUID_LEN_16) { return (this->uuid_.uuid.uuid16 >> 8) == data2 && (this->uuid_.uuid.uuid16 & 0xFF) == data1; } else if (this->uuid_.len == ESP_UUID_LEN_32) { for (uint8_t i = 0; i < 3; i++) { bool a = ((this->uuid_.uuid.uuid32 >> i * 8) & 0xFF) == data1; bool b = ((this->uuid_.uuid.uuid32 >> (i + 1) * 8) & 0xFF) == data2; if (a && b) return true; } } else { for (uint8_t i = 0; i < 15; i++) { if (this->uuid_.uuid.uuid128[i] == data1 && this->uuid_.uuid.uuid128[i + 1] == data2) return true; } } return false; } bool ESPBTUUID::operator==(const ESPBTUUID &uuid) const { if (this->uuid_.len == uuid.uuid_.len) { switch (this->uuid_.len) { case ESP_UUID_LEN_16: if (uuid.uuid_.uuid.uuid16 == this->uuid_.uuid.uuid16) { return true; } break; case ESP_UUID_LEN_32: if (uuid.uuid_.uuid.uuid32 == this->uuid_.uuid.uuid32) { return true; } break; case ESP_UUID_LEN_128: for (int i = 0; i < ESP_UUID_LEN_128; i++) { if (uuid.uuid_.uuid.uuid128[i] != this->uuid_.uuid.uuid128[i]) { return false; } } return true; break; } } else { return this->as_128bit() == uuid.as_128bit(); } return false; } esp_bt_uuid_t ESPBTUUID::get_uuid() const { return this->uuid_; } std::string ESPBTUUID::to_string() const { switch (this->uuid_.len) { case ESP_UUID_LEN_16: return str_snprintf("0x%02X%02X", 6, this->uuid_.uuid.uuid16 >> 8, this->uuid_.uuid.uuid16 & 0xff); case ESP_UUID_LEN_32: return str_snprintf("0x%02X%02X%02X%02X", 10, this->uuid_.uuid.uuid32 >> 24, (this->uuid_.uuid.uuid32 >> 16 & 0xff), (this->uuid_.uuid.uuid32 >> 8 & 0xff), this->uuid_.uuid.uuid32 & 0xff); default: case ESP_UUID_LEN_128: std::string buf; for (int8_t i = 15; i >= 0; i--) { buf += str_snprintf("%02X", 2, this->uuid_.uuid.uuid128[i]); if (i == 6 || i == 8 || i == 10 || i == 12) buf += "-"; } return buf; } return ""; } uint64_t ESPBTUUID::get_128bit_high() const { esp_bt_uuid_t uuid = this->as_128bit().get_uuid(); return ((uint64_t) uuid.uuid.uuid128[15] << 56) | ((uint64_t) uuid.uuid.uuid128[14] << 48) | ((uint64_t) uuid.uuid.uuid128[13] << 40) | ((uint64_t) uuid.uuid.uuid128[12] << 32) | ((uint64_t) uuid.uuid.uuid128[11] << 24) | ((uint64_t) uuid.uuid.uuid128[10] << 16) | ((uint64_t) uuid.uuid.uuid128[9] << 8) | ((uint64_t) uuid.uuid.uuid128[8]); } uint64_t ESPBTUUID::get_128bit_low() const { esp_bt_uuid_t uuid = this->as_128bit().get_uuid(); return ((uint64_t) uuid.uuid.uuid128[7] << 56) | ((uint64_t) uuid.uuid.uuid128[6] << 48) | ((uint64_t) uuid.uuid.uuid128[5] << 40) | ((uint64_t) uuid.uuid.uuid128[4] << 32) | ((uint64_t) uuid.uuid.uuid128[3] << 24) | ((uint64_t) uuid.uuid.uuid128[2] << 16) | ((uint64_t) uuid.uuid.uuid128[1] << 8) | ((uint64_t) uuid.uuid.uuid128[0]); } ESPBLEiBeacon::ESPBLEiBeacon(const uint8_t *data) { memcpy(&this->beacon_data_, data, sizeof(beacon_data_)); } optional ESPBLEiBeacon::from_manufacturer_data(const ServiceData &data) { if (!data.uuid.contains(0x4C, 0x00)) return {}; if (data.data.size() != 23) return {}; return ESPBLEiBeacon(data.data.data()); } void ESPBTDevice::parse_scan_rst(const esp_ble_gap_cb_param_t::ble_scan_result_evt_param ¶m) { this->scan_result_ = param; for (uint8_t i = 0; i < ESP_BD_ADDR_LEN; i++) this->address_[i] = param.bda[i]; this->address_type_ = param.ble_addr_type; this->rssi_ = param.rssi; this->parse_adv_(param); #ifdef ESPHOME_LOG_HAS_VERY_VERBOSE ESP_LOGVV(TAG, "Parse Result:"); const char *address_type = ""; switch (this->address_type_) { case BLE_ADDR_TYPE_PUBLIC: address_type = "PUBLIC"; break; case BLE_ADDR_TYPE_RANDOM: address_type = "RANDOM"; break; case BLE_ADDR_TYPE_RPA_PUBLIC: address_type = "RPA_PUBLIC"; break; case BLE_ADDR_TYPE_RPA_RANDOM: address_type = "RPA_RANDOM"; break; } ESP_LOGVV(TAG, " Address: %02X:%02X:%02X:%02X:%02X:%02X (%s)", this->address_[0], this->address_[1], this->address_[2], this->address_[3], this->address_[4], this->address_[5], address_type); ESP_LOGVV(TAG, " RSSI: %d", this->rssi_); ESP_LOGVV(TAG, " Name: '%s'", this->name_.c_str()); for (auto &it : this->tx_powers_) { ESP_LOGVV(TAG, " TX Power: %d", it); } if (this->appearance_.has_value()) { ESP_LOGVV(TAG, " Appearance: %u", *this->appearance_); } if (this->ad_flag_.has_value()) { ESP_LOGVV(TAG, " Ad Flag: %u", *this->ad_flag_); } for (auto &uuid : this->service_uuids_) { ESP_LOGVV(TAG, " Service UUID: %s", uuid.to_string().c_str()); } for (auto &data : this->manufacturer_datas_) { ESP_LOGVV(TAG, " Manufacturer data: %s", format_hex_pretty(data.data).c_str()); if (this->get_ibeacon().has_value()) { auto ibeacon = this->get_ibeacon().value(); ESP_LOGVV(TAG, " iBeacon data:"); ESP_LOGVV(TAG, " UUID: %s", ibeacon.get_uuid().to_string().c_str()); ESP_LOGVV(TAG, " Major: %u", ibeacon.get_major()); ESP_LOGVV(TAG, " Minor: %u", ibeacon.get_minor()); ESP_LOGVV(TAG, " TXPower: %d", ibeacon.get_signal_power()); } } for (auto &data : this->service_datas_) { ESP_LOGVV(TAG, " Service data:"); ESP_LOGVV(TAG, " UUID: %s", data.uuid.to_string().c_str()); ESP_LOGVV(TAG, " Data: %s", format_hex_pretty(data.data).c_str()); } ESP_LOGVV(TAG, "Adv data: %s", format_hex_pretty(param.ble_adv, param.adv_data_len + param.scan_rsp_len).c_str()); #endif } void ESPBTDevice::parse_adv_(const esp_ble_gap_cb_param_t::ble_scan_result_evt_param ¶m) { size_t offset = 0; const uint8_t *payload = param.ble_adv; uint8_t len = param.adv_data_len + param.scan_rsp_len; while (offset + 2 < len) { const uint8_t field_length = payload[offset++]; // First byte is length of adv record if (field_length == 0) break; // first byte of adv record is adv record type const uint8_t record_type = payload[offset++]; const uint8_t *record = &payload[offset]; const uint8_t record_length = field_length - 1; offset += record_length; // See also Generic Access Profile Assigned Numbers: // https://www.bluetooth.com/specifications/assigned-numbers/generic-access-profile/ See also ADVERTISING AND SCAN // RESPONSE DATA FORMAT: https://www.bluetooth.com/specifications/bluetooth-core-specification/ (vol 3, part C, 11) // See also Core Specification Supplement: https://www.bluetooth.com/specifications/bluetooth-core-specification/ // (called CSS here) switch (record_type) { case ESP_BLE_AD_TYPE_NAME_SHORT: case ESP_BLE_AD_TYPE_NAME_CMPL: { // CSS 1.2 LOCAL NAME // "The Local Name data type shall be the same as, or a shortened version of, the local name assigned to the // device." CSS 1: Optional in this context; shall not appear more than once in a block. // SHORTENED LOCAL NAME // "The Shortened Local Name data type defines a shortened version of the Local Name data type. The Shortened // Local Name data type shall not be used to advertise a name that is longer than the Local Name data type." if (record_length > this->name_.length()) { this->name_ = std::string(reinterpret_cast(record), record_length); } break; } case ESP_BLE_AD_TYPE_TX_PWR: { // CSS 1.5 TX POWER LEVEL // "The TX Power Level data type indicates the transmitted power level of the packet containing the data type." // CSS 1: Optional in this context (may appear more than once in a block). this->tx_powers_.push_back(*payload); break; } case ESP_BLE_AD_TYPE_APPEARANCE: { // CSS 1.12 APPEARANCE // "The Appearance data type defines the external appearance of the device." // See also https://www.bluetooth.com/specifications/gatt/characteristics/ // CSS 1: Optional in this context; shall not appear more than once in a block and shall not appear in both // the AD and SRD of the same extended advertising interval. this->appearance_ = *reinterpret_cast(record); break; } case ESP_BLE_AD_TYPE_FLAG: { // CSS 1.3 FLAGS // "The Flags data type contains one bit Boolean flags. The Flags data type shall be included when any of the // Flag bits are non-zero and the advertising packet is connectable, otherwise the Flags data type may be // omitted." // CSS 1: Optional in this context; shall not appear more than once in a block. this->ad_flag_ = *record; break; } // CSS 1.1 SERVICE UUID // The Service UUID data type is used to include a list of Service or Service Class UUIDs. // There are six data types defined for the three sizes of Service UUIDs that may be returned: // CSS 1: Optional in this context (may appear more than once in a block). case ESP_BLE_AD_TYPE_16SRV_CMPL: case ESP_BLE_AD_TYPE_16SRV_PART: { // • 16-bit Bluetooth Service UUIDs for (uint8_t i = 0; i < record_length / 2; i++) { this->service_uuids_.push_back(ESPBTUUID::from_uint16(*reinterpret_cast(record + 2 * i))); } break; } case ESP_BLE_AD_TYPE_32SRV_CMPL: case ESP_BLE_AD_TYPE_32SRV_PART: { // • 32-bit Bluetooth Service UUIDs for (uint8_t i = 0; i < record_length / 4; i++) { this->service_uuids_.push_back(ESPBTUUID::from_uint32(*reinterpret_cast(record + 4 * i))); } break; } case ESP_BLE_AD_TYPE_128SRV_CMPL: case ESP_BLE_AD_TYPE_128SRV_PART: { // • Global 128-bit Service UUIDs this->service_uuids_.push_back(ESPBTUUID::from_raw(record)); break; } case ESP_BLE_AD_MANUFACTURER_SPECIFIC_TYPE: { // CSS 1.4 MANUFACTURER SPECIFIC DATA // "The Manufacturer Specific data type is used for manufacturer specific data. The first two data octets shall // contain a company identifier from Assigned Numbers. The interpretation of any other octets within the data // shall be defined by the manufacturer specified by the company identifier." // CSS 1: Optional in this context (may appear more than once in a block). if (record_length < 2) { ESP_LOGV(TAG, "Record length too small for ESP_BLE_AD_MANUFACTURER_SPECIFIC_TYPE"); break; } ServiceData data{}; data.uuid = ESPBTUUID::from_uint16(*reinterpret_cast(record)); data.data.assign(record + 2UL, record + record_length); this->manufacturer_datas_.push_back(data); break; } // CSS 1.11 SERVICE DATA // "The Service Data data type consists of a service UUID with the data associated with that service." // CSS 1: Optional in this context (may appear more than once in a block). case ESP_BLE_AD_TYPE_SERVICE_DATA: { // «Service Data - 16 bit UUID» // Size: 2 or more octets // The first 2 octets contain the 16 bit Service UUID fol- lowed by additional service data if (record_length < 2) { ESP_LOGV(TAG, "Record length too small for ESP_BLE_AD_TYPE_SERVICE_DATA"); break; } ServiceData data{}; data.uuid = ESPBTUUID::from_uint16(*reinterpret_cast(record)); data.data.assign(record + 2UL, record + record_length); this->service_datas_.push_back(data); break; } case ESP_BLE_AD_TYPE_32SERVICE_DATA: { // «Service Data - 32 bit UUID» // Size: 4 or more octets // The first 4 octets contain the 32 bit Service UUID fol- lowed by additional service data if (record_length < 4) { ESP_LOGV(TAG, "Record length too small for ESP_BLE_AD_TYPE_32SERVICE_DATA"); break; } ServiceData data{}; data.uuid = ESPBTUUID::from_uint32(*reinterpret_cast(record)); data.data.assign(record + 4UL, record + record_length); this->service_datas_.push_back(data); break; } case ESP_BLE_AD_TYPE_128SERVICE_DATA: { // «Service Data - 128 bit UUID» // Size: 16 or more octets // The first 16 octets contain the 128 bit Service UUID followed by additional service data if (record_length < 16) { ESP_LOGV(TAG, "Record length too small for ESP_BLE_AD_TYPE_128SERVICE_DATA"); break; } ServiceData data{}; data.uuid = ESPBTUUID::from_raw(record); data.data.assign(record + 16UL, record + record_length); this->service_datas_.push_back(data); break; } default: { ESP_LOGV(TAG, "Unhandled type: advType: 0x%02x", record_type); break; } } } } std::string ESPBTDevice::address_str() const { char mac[24]; snprintf(mac, sizeof(mac), "%02X:%02X:%02X:%02X:%02X:%02X", this->address_[0], this->address_[1], this->address_[2], this->address_[3], this->address_[4], this->address_[5]); return mac; } uint64_t ESPBTDevice::address_uint64() const { return ble_addr_to_uint64(this->address_); } void ESP32BLETracker::dump_config() { ESP_LOGCONFIG(TAG, "BLE Tracker:"); ESP_LOGCONFIG(TAG, " Scan Duration: %u s", this->scan_duration_); ESP_LOGCONFIG(TAG, " Scan Interval: %.1f ms", this->scan_interval_ * 0.625f); ESP_LOGCONFIG(TAG, " Scan Window: %.1f ms", this->scan_window_ * 0.625f); ESP_LOGCONFIG(TAG, " Scan Type: %s", this->scan_active_ ? "ACTIVE" : "PASSIVE"); ESP_LOGCONFIG(TAG, " Continuous Scanning: %s", this->scan_continuous_ ? "True" : "False"); } void ESP32BLETracker::print_bt_device_info(const ESPBTDevice &device) { const uint64_t address = device.address_uint64(); for (auto &disc : this->already_discovered_) { if (disc == address) return; } this->already_discovered_.push_back(address); ESP_LOGD(TAG, "Found device %s RSSI=%d", device.address_str().c_str(), device.get_rssi()); const char *address_type_s; switch (device.get_address_type()) { case BLE_ADDR_TYPE_PUBLIC: address_type_s = "PUBLIC"; break; case BLE_ADDR_TYPE_RANDOM: address_type_s = "RANDOM"; break; case BLE_ADDR_TYPE_RPA_PUBLIC: address_type_s = "RPA_PUBLIC"; break; case BLE_ADDR_TYPE_RPA_RANDOM: address_type_s = "RPA_RANDOM"; break; default: address_type_s = "UNKNOWN"; break; } ESP_LOGD(TAG, " Address Type: %s", address_type_s); if (!device.get_name().empty()) ESP_LOGD(TAG, " Name: '%s'", device.get_name().c_str()); for (auto &tx_power : device.get_tx_powers()) { ESP_LOGD(TAG, " TX Power: %d", tx_power); } } } // namespace esp32_ble_tracker } // namespace esphome #endif