#include "scheduler.h" #include "esphome/core/log.h" #include "esphome/core/helpers.h" #include namespace esphome { static const char *TAG = "scheduler"; static const uint32_t SCHEDULER_DONT_RUN = 4294967295UL; // Uncomment to debug scheduler // #define ESPHOME_DEBUG_SCHEDULER void HOT Scheduler::set_timeout(Component *component, const std::string &name, uint32_t timeout, std::function &&func) { const uint32_t now = this->millis_(); if (!name.empty()) this->cancel_timeout(component, name); if (timeout == SCHEDULER_DONT_RUN) return; ESP_LOGVV(TAG, "set_timeout(name='%s', timeout=%u)", name.c_str(), timeout); auto item = make_unique(); item->component = component; item->name = name; item->type = SchedulerItem::TIMEOUT; item->timeout = timeout; item->last_execution = now; item->last_execution_major = this->millis_major_; item->f = std::move(func); item->remove = false; this->push_(std::move(item)); } bool HOT Scheduler::cancel_timeout(Component *component, const std::string &name) { return this->cancel_item_(component, name, SchedulerItem::TIMEOUT); } void HOT Scheduler::set_interval(Component *component, const std::string &name, uint32_t interval, std::function &&func) { const uint32_t now = this->millis_(); if (!name.empty()) this->cancel_interval(component, name); if (interval == SCHEDULER_DONT_RUN) return; // only put offset in lower half uint32_t offset = 0; if (interval != 0) offset = (random_uint32() % interval) / 2; ESP_LOGVV(TAG, "set_interval(name='%s', interval=%u, offset=%u)", name.c_str(), interval, offset); auto item = make_unique(); item->component = component; item->name = name; item->type = SchedulerItem::INTERVAL; item->interval = interval; item->last_execution = now - offset - interval; item->last_execution_major = this->millis_major_; if (item->last_execution > now) item->last_execution_major--; item->f = std::move(func); item->remove = false; this->push_(std::move(item)); } bool HOT Scheduler::cancel_interval(Component *component, const std::string &name) { return this->cancel_item_(component, name, SchedulerItem::INTERVAL); } optional HOT Scheduler::next_schedule_in() { if (this->empty_()) return {}; auto &item = this->items_[0]; const uint32_t now = this->millis_(); uint32_t next_time = item->last_execution + item->interval; if (next_time < now) return 0; return next_time - now; } void ICACHE_RAM_ATTR HOT Scheduler::call() { const uint32_t now = this->millis_(); this->process_to_add(); #ifdef ESPHOME_DEBUG_SCHEDULER static uint32_t last_print = 0; if (now - last_print > 2000) { last_print = now; std::vector> old_items; ESP_LOGVV(TAG, "Items: count=%u, now=%u", this->items_.size(), now); while (!this->empty_()) { auto item = std::move(this->items_[0]); const char *type = item->type == SchedulerItem::INTERVAL ? "interval" : "timeout"; ESP_LOGVV(TAG, " %s '%s' interval=%u last_execution=%u (%u) next=%u (%u)", type, item->name.c_str(), item->interval, item->last_execution, item->last_execution_major, item->next_execution(), item->next_execution_major()); this->pop_raw_(); old_items.push_back(std::move(item)); } ESP_LOGVV(TAG, "\n"); this->items_ = std::move(old_items); } #endif // ESPHOME_DEBUG_SCHEDULER while (!this->empty_()) { // use scoping to indicate visibility of `item` variable { // Don't copy-by value yet auto &item = this->items_[0]; if ((now - item->last_execution) < item->interval) // Not reached timeout yet, done for this call break; uint8_t major = item->next_execution_major(); if (this->millis_major_ - major > 1) break; // Don't run on failed components if (item->component != nullptr && item->component->is_failed()) { this->pop_raw_(); continue; } #ifdef ESPHOME_LOG_HAS_VERY_VERBOSE const char *type = item->type == SchedulerItem::INTERVAL ? "interval" : "timeout"; ESP_LOGVV(TAG, "Running %s '%s' with interval=%u last_execution=%u (now=%u)", type, item->name.c_str(), item->interval, item->last_execution, now); #endif // Warning: During f(), a lot of stuff can happen, including: // - timeouts/intervals get added, potentially invalidating vector pointers // - timeouts/intervals get cancelled item->f(); } { // new scope, item from before might have been moved in the vector auto item = std::move(this->items_[0]); // Only pop after function call, this ensures we were reachable // during the function call and know if we were cancelled. this->pop_raw_(); if (item->remove) { // We were removed/cancelled in the function call, stop continue; } if (item->type == SchedulerItem::INTERVAL) { if (item->interval != 0) { const uint32_t before = item->last_execution; const uint32_t amount = (now - item->last_execution) / item->interval; item->last_execution += amount * item->interval; if (item->last_execution < before) item->last_execution_major++; } this->push_(std::move(item)); } } } this->process_to_add(); } void HOT Scheduler::process_to_add() { for (auto &it : this->to_add_) { if (it->remove) { continue; } this->items_.push_back(std::move(it)); std::push_heap(this->items_.begin(), this->items_.end(), SchedulerItem::cmp); } this->to_add_.clear(); } void HOT Scheduler::cleanup_() { while (!this->items_.empty()) { auto &item = this->items_[0]; if (!item->remove) return; this->pop_raw_(); } } void HOT Scheduler::pop_raw_() { std::pop_heap(this->items_.begin(), this->items_.end(), SchedulerItem::cmp); this->items_.pop_back(); } void HOT Scheduler::push_(std::unique_ptr item) { this->to_add_.push_back(std::move(item)); } bool HOT Scheduler::cancel_item_(Component *component, const std::string &name, Scheduler::SchedulerItem::Type type) { bool ret = false; for (auto &it : this->items_) if (it->component == component && it->name == name && it->type == type) { it->remove = true; ret = true; } for (auto &it : this->to_add_) if (it->component == component && it->name == name && it->type == type) { it->remove = true; ret = true; } return ret; } uint32_t Scheduler::millis_() { const uint32_t now = millis(); if (now < this->last_millis_) { ESP_LOGD(TAG, "Incrementing scheduler major"); this->millis_major_++; } this->last_millis_ = now; return now; } bool HOT Scheduler::SchedulerItem::cmp(const std::unique_ptr &a, const std::unique_ptr &b) { // min-heap // return true if *a* will happen after *b* uint32_t a_next_exec = a->next_execution(); uint8_t a_next_exec_major = a->next_execution_major(); uint32_t b_next_exec = b->next_execution(); uint8_t b_next_exec_major = b->next_execution_major(); if (a_next_exec_major != b_next_exec_major) { // The "major" calculation is quite complicated. // Basically, we need to check if the major value lies in the future or // // Here are some cases to think about: // Format: a_major,b_major -> expected result (a-b, b-a) // a=255,b=0 -> false (255, 1) // a=0,b=1 -> false (255, 1) // a=1,b=0 -> true (1, 255) // a=0,b=255 -> true (1, 255) uint8_t diff1 = a_next_exec_major - b_next_exec_major; uint8_t diff2 = b_next_exec_major - a_next_exec_major; return diff1 < diff2; } return a_next_exec > b_next_exec; } } // namespace esphome