import esphome.codegen as cg from esphome.components import sensor, spi import esphome.config_validation as cv from esphome.const import ( CONF_APPARENT_POWER, CONF_CURRENT, CONF_FORWARD_ACTIVE_ENERGY, CONF_FREQUENCY, CONF_ID, CONF_LINE_FREQUENCY, CONF_PHASE_A, CONF_PHASE_ANGLE, CONF_PHASE_B, CONF_PHASE_C, CONF_POWER, CONF_POWER_FACTOR, CONF_REACTIVE_POWER, CONF_REVERSE_ACTIVE_ENERGY, CONF_VOLTAGE, DEVICE_CLASS_CURRENT, DEVICE_CLASS_ENERGY, DEVICE_CLASS_POWER, DEVICE_CLASS_POWER_FACTOR, DEVICE_CLASS_TEMPERATURE, DEVICE_CLASS_VOLTAGE, ENTITY_CATEGORY_DIAGNOSTIC, ICON_CURRENT_AC, ICON_LIGHTBULB, STATE_CLASS_MEASUREMENT, STATE_CLASS_TOTAL_INCREASING, UNIT_AMPERE, UNIT_CELSIUS, UNIT_DEGREES, UNIT_HERTZ, UNIT_VOLT, UNIT_VOLT_AMPS_REACTIVE, UNIT_WATT, UNIT_WATT_HOURS, ) from . import atm90e32_ns CONF_CHIP_TEMPERATURE = "chip_temperature" CONF_GAIN_PGA = "gain_pga" CONF_CURRENT_PHASES = "current_phases" CONF_GAIN_VOLTAGE = "gain_voltage" CONF_GAIN_CT = "gain_ct" CONF_HARMONIC_POWER = "harmonic_power" CONF_PEAK_CURRENT = "peak_current" CONF_PEAK_CURRENT_SIGNED = "peak_current_signed" CONF_ENABLE_OFFSET_CALIBRATION = "enable_offset_calibration" UNIT_DEG = "degrees" LINE_FREQS = { "50HZ": 50, "60HZ": 60, } CURRENT_PHASES = { "2": 2, "3": 3, } PGA_GAINS = { "1X": 0x0, "2X": 0x15, "4X": 0x2A, } ATM90E32Component = atm90e32_ns.class_( "ATM90E32Component", cg.PollingComponent, spi.SPIDevice ) ATM90E32_PHASE_SCHEMA = cv.Schema( { cv.Optional(CONF_VOLTAGE): sensor.sensor_schema( unit_of_measurement=UNIT_VOLT, accuracy_decimals=2, device_class=DEVICE_CLASS_VOLTAGE, state_class=STATE_CLASS_MEASUREMENT, ), cv.Optional(CONF_CURRENT): sensor.sensor_schema( unit_of_measurement=UNIT_AMPERE, accuracy_decimals=2, device_class=DEVICE_CLASS_CURRENT, state_class=STATE_CLASS_MEASUREMENT, ), cv.Optional(CONF_POWER): sensor.sensor_schema( unit_of_measurement=UNIT_WATT, accuracy_decimals=2, device_class=DEVICE_CLASS_POWER, state_class=STATE_CLASS_MEASUREMENT, ), cv.Optional(CONF_REACTIVE_POWER): sensor.sensor_schema( unit_of_measurement=UNIT_VOLT_AMPS_REACTIVE, icon=ICON_LIGHTBULB, accuracy_decimals=2, state_class=STATE_CLASS_MEASUREMENT, ), cv.Optional(CONF_APPARENT_POWER): sensor.sensor_schema( unit_of_measurement=UNIT_WATT, accuracy_decimals=2, device_class=DEVICE_CLASS_POWER, state_class=STATE_CLASS_MEASUREMENT, ), cv.Optional(CONF_POWER_FACTOR): sensor.sensor_schema( accuracy_decimals=2, device_class=DEVICE_CLASS_POWER_FACTOR, state_class=STATE_CLASS_MEASUREMENT, ), cv.Optional(CONF_FORWARD_ACTIVE_ENERGY): sensor.sensor_schema( unit_of_measurement=UNIT_WATT_HOURS, accuracy_decimals=2, device_class=DEVICE_CLASS_ENERGY, state_class=STATE_CLASS_TOTAL_INCREASING, ), cv.Optional(CONF_REVERSE_ACTIVE_ENERGY): sensor.sensor_schema( unit_of_measurement=UNIT_WATT_HOURS, accuracy_decimals=2, device_class=DEVICE_CLASS_ENERGY, state_class=STATE_CLASS_TOTAL_INCREASING, ), cv.Optional(CONF_PHASE_ANGLE): sensor.sensor_schema( unit_of_measurement=UNIT_DEGREES, accuracy_decimals=2, device_class=DEVICE_CLASS_POWER, state_class=STATE_CLASS_MEASUREMENT, ), cv.Optional(CONF_HARMONIC_POWER): sensor.sensor_schema( unit_of_measurement=UNIT_WATT, accuracy_decimals=2, device_class=DEVICE_CLASS_POWER, state_class=STATE_CLASS_MEASUREMENT, ), cv.Optional(CONF_PEAK_CURRENT): sensor.sensor_schema( unit_of_measurement=UNIT_AMPERE, accuracy_decimals=2, device_class=DEVICE_CLASS_CURRENT, state_class=STATE_CLASS_MEASUREMENT, ), cv.Optional(CONF_GAIN_VOLTAGE, default=7305): cv.uint16_t, cv.Optional(CONF_GAIN_CT, default=27961): cv.uint16_t, } ) CONFIG_SCHEMA = ( cv.Schema( { cv.GenerateID(): cv.declare_id(ATM90E32Component), cv.Optional(CONF_PHASE_A): ATM90E32_PHASE_SCHEMA, cv.Optional(CONF_PHASE_B): ATM90E32_PHASE_SCHEMA, cv.Optional(CONF_PHASE_C): ATM90E32_PHASE_SCHEMA, cv.Optional(CONF_FREQUENCY): sensor.sensor_schema( unit_of_measurement=UNIT_HERTZ, icon=ICON_CURRENT_AC, accuracy_decimals=1, state_class=STATE_CLASS_MEASUREMENT, ), cv.Optional(CONF_CHIP_TEMPERATURE): sensor.sensor_schema( unit_of_measurement=UNIT_CELSIUS, accuracy_decimals=1, device_class=DEVICE_CLASS_TEMPERATURE, state_class=STATE_CLASS_MEASUREMENT, entity_category=ENTITY_CATEGORY_DIAGNOSTIC, ), cv.Required(CONF_LINE_FREQUENCY): cv.enum(LINE_FREQS, upper=True), cv.Optional(CONF_CURRENT_PHASES, default="3"): cv.enum( CURRENT_PHASES, upper=True ), cv.Optional(CONF_GAIN_PGA, default="2X"): cv.enum(PGA_GAINS, upper=True), cv.Optional(CONF_PEAK_CURRENT_SIGNED, default=False): cv.boolean, cv.Optional(CONF_ENABLE_OFFSET_CALIBRATION, default=False): cv.boolean, } ) .extend(cv.polling_component_schema("60s")) .extend(spi.spi_device_schema()) ) async def to_code(config): var = cg.new_Pvariable(config[CONF_ID]) await cg.register_component(var, config) await spi.register_spi_device(var, config) for i, phase in enumerate([CONF_PHASE_A, CONF_PHASE_B, CONF_PHASE_C]): if phase not in config: continue conf = config[phase] cg.add(var.set_volt_gain(i, conf[CONF_GAIN_VOLTAGE])) cg.add(var.set_ct_gain(i, conf[CONF_GAIN_CT])) if voltage_config := conf.get(CONF_VOLTAGE): sens = await sensor.new_sensor(voltage_config) cg.add(var.set_voltage_sensor(i, sens)) if current_config := conf.get(CONF_CURRENT): sens = await sensor.new_sensor(current_config) cg.add(var.set_current_sensor(i, sens)) if power_config := conf.get(CONF_POWER): sens = await sensor.new_sensor(power_config) cg.add(var.set_power_sensor(i, sens)) if reactive_power_config := conf.get(CONF_REACTIVE_POWER): sens = await sensor.new_sensor(reactive_power_config) cg.add(var.set_reactive_power_sensor(i, sens)) if apparent_power_config := conf.get(CONF_APPARENT_POWER): sens = await sensor.new_sensor(apparent_power_config) cg.add(var.set_apparent_power_sensor(i, sens)) if power_factor_config := conf.get(CONF_POWER_FACTOR): sens = await sensor.new_sensor(power_factor_config) cg.add(var.set_power_factor_sensor(i, sens)) if forward_active_energy_config := conf.get(CONF_FORWARD_ACTIVE_ENERGY): sens = await sensor.new_sensor(forward_active_energy_config) cg.add(var.set_forward_active_energy_sensor(i, sens)) if reverse_active_energy_config := conf.get(CONF_REVERSE_ACTIVE_ENERGY): sens = await sensor.new_sensor(reverse_active_energy_config) cg.add(var.set_reverse_active_energy_sensor(i, sens)) if phase_angle_config := conf.get(CONF_PHASE_ANGLE): sens = await sensor.new_sensor(phase_angle_config) cg.add(var.set_phase_angle_sensor(i, sens)) if harmonic_active_power_config := conf.get(CONF_HARMONIC_POWER): sens = await sensor.new_sensor(harmonic_active_power_config) cg.add(var.set_harmonic_active_power_sensor(i, sens)) if peak_current_config := conf.get(CONF_PEAK_CURRENT): sens = await sensor.new_sensor(peak_current_config) cg.add(var.set_peak_current_sensor(i, sens)) if frequency_config := config.get(CONF_FREQUENCY): sens = await sensor.new_sensor(frequency_config) cg.add(var.set_freq_sensor(sens)) if chip_temperature_config := config.get(CONF_CHIP_TEMPERATURE): sens = await sensor.new_sensor(chip_temperature_config) cg.add(var.set_chip_temperature_sensor(sens)) cg.add(var.set_line_freq(config[CONF_LINE_FREQUENCY])) cg.add(var.set_current_phases(config[CONF_CURRENT_PHASES])) cg.add(var.set_pga_gain(config[CONF_GAIN_PGA])) cg.add(var.set_peak_current_signed(config[CONF_PEAK_CURRENT_SIGNED])) cg.add(var.set_enable_offset_calibration(config[CONF_ENABLE_OFFSET_CALIBRATION]))