#include "bme680_bsec.h" #include "esphome/core/log.h" #include "esphome/core/helpers.h" #include namespace esphome { namespace bme680_bsec { #ifdef USE_BSEC static const char *const TAG = "bme680_bsec.sensor"; static const std::string IAQ_ACCURACY_STATES[4] = {"Stabilizing", "Uncertain", "Calibrating", "Calibrated"}; std::vector BME680BSECComponent::instances; // NOLINT(cppcoreguidelines-avoid-non-const-global-variables) uint8_t BME680BSECComponent::work_buffer_[BSEC_MAX_WORKBUFFER_SIZE] = {0}; void BME680BSECComponent::setup() { ESP_LOGCONFIG(TAG, "Setting up BME680(%s) via BSEC...", this->device_id_.c_str()); uint8_t new_idx = BME680BSECComponent::instances.size(); BME680BSECComponent::instances.push_back(this); this->bsec_state_data_valid_ = false; // Initialize the bme680_ structure (passed-in to the bme680_* functions) and the BME680 device this->bme680_.dev_id = new_idx; // This is a "Place holder to store the id of the device structure" (see bme680_defs.h). // This will be passed-in as first parameter to the next "read" and "write" function pointers. // We currently use the index of the object in the BME680BSECComponent::instances vector to identify // the different devices in the system. this->bme680_.intf = BME680_I2C_INTF; this->bme680_.read = BME680BSECComponent::read_bytes_wrapper; this->bme680_.write = BME680BSECComponent::write_bytes_wrapper; this->bme680_.delay_ms = BME680BSECComponent::delay_ms; this->bme680_.amb_temp = 25; this->bme680_status_ = bme680_init(&this->bme680_); if (this->bme680_status_ != BME680_OK) { this->mark_failed(); return; } // Initialize the BSEC library if (this->reinit_bsec_lib_() != 0) { this->mark_failed(); return; } // Load the BSEC library state from storage this->load_state_(); } void BME680BSECComponent::set_config_() { if (this->sample_rate_ == SAMPLE_RATE_ULP) { const uint8_t config[] = { #include "config/generic_33v_300s_28d/bsec_iaq.txt" }; this->bsec_status_ = bsec_set_configuration(config, BSEC_MAX_PROPERTY_BLOB_SIZE, this->work_buffer_, sizeof(this->work_buffer_)); } else { const uint8_t config[] = { #include "config/generic_33v_3s_28d/bsec_iaq.txt" }; this->bsec_status_ = bsec_set_configuration(config, BSEC_MAX_PROPERTY_BLOB_SIZE, this->work_buffer_, sizeof(this->work_buffer_)); } } float BME680BSECComponent::calc_sensor_sample_rate_(SampleRate sample_rate) { if (sample_rate == SAMPLE_RATE_DEFAULT) { sample_rate = this->sample_rate_; } return sample_rate == SAMPLE_RATE_ULP ? BSEC_SAMPLE_RATE_ULP : BSEC_SAMPLE_RATE_LP; } void BME680BSECComponent::update_subscription_() { bsec_sensor_configuration_t virtual_sensors[BSEC_NUMBER_OUTPUTS]; int num_virtual_sensors = 0; if (this->iaq_sensor_) { virtual_sensors[num_virtual_sensors].sensor_id = this->iaq_mode_ == IAQ_MODE_STATIC ? BSEC_OUTPUT_STATIC_IAQ : BSEC_OUTPUT_IAQ; virtual_sensors[num_virtual_sensors].sample_rate = this->calc_sensor_sample_rate_(SAMPLE_RATE_DEFAULT); num_virtual_sensors++; } if (this->co2_equivalent_sensor_) { virtual_sensors[num_virtual_sensors].sensor_id = BSEC_OUTPUT_CO2_EQUIVALENT; virtual_sensors[num_virtual_sensors].sample_rate = this->calc_sensor_sample_rate_(SAMPLE_RATE_DEFAULT); num_virtual_sensors++; } if (this->breath_voc_equivalent_sensor_) { virtual_sensors[num_virtual_sensors].sensor_id = BSEC_OUTPUT_BREATH_VOC_EQUIVALENT; virtual_sensors[num_virtual_sensors].sample_rate = this->calc_sensor_sample_rate_(SAMPLE_RATE_DEFAULT); num_virtual_sensors++; } if (this->pressure_sensor_) { virtual_sensors[num_virtual_sensors].sensor_id = BSEC_OUTPUT_RAW_PRESSURE; virtual_sensors[num_virtual_sensors].sample_rate = this->calc_sensor_sample_rate_(this->pressure_sample_rate_); num_virtual_sensors++; } if (this->gas_resistance_sensor_) { virtual_sensors[num_virtual_sensors].sensor_id = BSEC_OUTPUT_RAW_GAS; virtual_sensors[num_virtual_sensors].sample_rate = this->calc_sensor_sample_rate_(SAMPLE_RATE_DEFAULT); num_virtual_sensors++; } if (this->temperature_sensor_) { virtual_sensors[num_virtual_sensors].sensor_id = BSEC_OUTPUT_SENSOR_HEAT_COMPENSATED_TEMPERATURE; virtual_sensors[num_virtual_sensors].sample_rate = this->calc_sensor_sample_rate_(this->temperature_sample_rate_); num_virtual_sensors++; } if (this->humidity_sensor_) { virtual_sensors[num_virtual_sensors].sensor_id = BSEC_OUTPUT_SENSOR_HEAT_COMPENSATED_HUMIDITY; virtual_sensors[num_virtual_sensors].sample_rate = this->calc_sensor_sample_rate_(this->humidity_sample_rate_); num_virtual_sensors++; } bsec_sensor_configuration_t sensor_settings[BSEC_MAX_PHYSICAL_SENSOR]; uint8_t num_sensor_settings = BSEC_MAX_PHYSICAL_SENSOR; this->bsec_status_ = bsec_update_subscription(virtual_sensors, num_virtual_sensors, sensor_settings, &num_sensor_settings); ESP_LOGV(TAG, "%s: updating subscription for %d virtual sensors (out=%d sensors)", this->device_id_.c_str(), num_virtual_sensors, num_sensor_settings); } void BME680BSECComponent::dump_config() { ESP_LOGCONFIG(TAG, "%s via BSEC:", this->device_id_.c_str()); bsec_version_t version; bsec_get_version(&version); ESP_LOGCONFIG(TAG, " BSEC Version: %d.%d.%d.%d", version.major, version.minor, version.major_bugfix, version.minor_bugfix); LOG_I2C_DEVICE(this); if (this->is_failed()) { ESP_LOGE(TAG, "Communication failed (BSEC Status: %d, BME680 Status: %d)", this->bsec_status_, this->bme680_status_); } ESP_LOGCONFIG(TAG, " Temperature Offset: %.2f", this->temperature_offset_); ESP_LOGCONFIG(TAG, " IAQ Mode: %s", this->iaq_mode_ == IAQ_MODE_STATIC ? "Static" : "Mobile"); ESP_LOGCONFIG(TAG, " Sample Rate: %s", BME680_BSEC_SAMPLE_RATE_LOG(this->sample_rate_)); ESP_LOGCONFIG(TAG, " State Save Interval: %ims", this->state_save_interval_ms_); LOG_SENSOR(" ", "Temperature", this->temperature_sensor_); ESP_LOGCONFIG(TAG, " Sample Rate: %s", BME680_BSEC_SAMPLE_RATE_LOG(this->temperature_sample_rate_)); LOG_SENSOR(" ", "Pressure", this->pressure_sensor_); ESP_LOGCONFIG(TAG, " Sample Rate: %s", BME680_BSEC_SAMPLE_RATE_LOG(this->pressure_sample_rate_)); LOG_SENSOR(" ", "Humidity", this->humidity_sensor_); ESP_LOGCONFIG(TAG, " Sample Rate: %s", BME680_BSEC_SAMPLE_RATE_LOG(this->humidity_sample_rate_)); LOG_SENSOR(" ", "Gas Resistance", this->gas_resistance_sensor_); LOG_SENSOR(" ", "IAQ", this->iaq_sensor_); LOG_SENSOR(" ", "Numeric IAQ Accuracy", this->iaq_accuracy_sensor_); LOG_TEXT_SENSOR(" ", "IAQ Accuracy", this->iaq_accuracy_text_sensor_); LOG_SENSOR(" ", "CO2 Equivalent", this->co2_equivalent_sensor_); LOG_SENSOR(" ", "Breath VOC Equivalent", this->breath_voc_equivalent_sensor_); } float BME680BSECComponent::get_setup_priority() const { return setup_priority::DATA; } void BME680BSECComponent::loop() { this->run_(); if (this->bsec_status_ < BSEC_OK || this->bme680_status_ < BME680_OK) { this->status_set_error(); } else { this->status_clear_error(); } if (this->bsec_status_ > BSEC_OK || this->bme680_status_ > BME680_OK) { this->status_set_warning(); } else { this->status_clear_warning(); } // Process a single action from the queue. These are primarily sensor state publishes // that in totality take too long to send in a single call. if (this->queue_.size()) { auto action = std::move(this->queue_.front()); this->queue_.pop(); action(); } } void BME680BSECComponent::run_() { int64_t curr_time_ns = this->get_time_ns_(); if (curr_time_ns < this->next_call_ns_) { return; } ESP_LOGV(TAG, "%s: Performing sensor run", this->device_id_.c_str()); // Restore BSEC library state // The reinit_bsec_lib_ method is computationally expensive: it takes 1200÷2900 microseconds on a ESP32. // It can be skipped entirely when there is only one device (since the BSEC library won't be shared) if (BME680BSECComponent::instances.size() > 1) { int res = this->reinit_bsec_lib_(); if (res != 0) return; } this->bsec_status_ = bsec_sensor_control(curr_time_ns, &this->bme680_settings_); if (this->bsec_status_ < BSEC_OK) { ESP_LOGW(TAG, "Failed to fetch sensor control settings (BSEC Error Code %d)", this->bsec_status_); return; } this->next_call_ns_ = this->bme680_settings_.next_call; if (this->bme680_settings_.trigger_measurement) { this->bme680_.tph_sett.os_temp = this->bme680_settings_.temperature_oversampling; this->bme680_.tph_sett.os_pres = this->bme680_settings_.pressure_oversampling; this->bme680_.tph_sett.os_hum = this->bme680_settings_.humidity_oversampling; this->bme680_.gas_sett.run_gas = this->bme680_settings_.run_gas; this->bme680_.gas_sett.heatr_temp = this->bme680_settings_.heater_temperature; this->bme680_.gas_sett.heatr_dur = this->bme680_settings_.heating_duration; this->bme680_.power_mode = BME680_FORCED_MODE; uint16_t desired_settings = BME680_OST_SEL | BME680_OSP_SEL | BME680_OSH_SEL | BME680_GAS_SENSOR_SEL; this->bme680_status_ = bme680_set_sensor_settings(desired_settings, &this->bme680_); if (this->bme680_status_ != BME680_OK) { ESP_LOGW(TAG, "Failed to set sensor settings (BME680 Error Code %d)", this->bme680_status_); return; } this->bme680_status_ = bme680_set_sensor_mode(&this->bme680_); if (this->bme680_status_ != BME680_OK) { ESP_LOGW(TAG, "Failed to set sensor mode (BME680 Error Code %d)", this->bme680_status_); return; } uint16_t meas_dur = 0; bme680_get_profile_dur(&meas_dur, &this->bme680_); // Since we are about to go "out of scope" in the loop, take a snapshot of the state now so we can restore it later // TODO: it would be interesting to see if this is really needed here, or if it's needed only after each // bsec_do_steps() call if (BME680BSECComponent::instances.size() > 1) this->snapshot_state_(); ESP_LOGV(TAG, "Queueing read in %ums", meas_dur); this->set_timeout("read", meas_dur, [this]() { this->read_(); }); } else { ESP_LOGV(TAG, "Measurement not required"); this->read_(); } } void BME680BSECComponent::read_() { ESP_LOGV(TAG, "%s: Reading data", this->device_id_.c_str()); int64_t curr_time_ns = this->get_time_ns_(); if (this->bme680_settings_.trigger_measurement) { while (this->bme680_.power_mode != BME680_SLEEP_MODE) { this->bme680_status_ = bme680_get_sensor_mode(&this->bme680_); if (this->bme680_status_ != BME680_OK) { ESP_LOGW(TAG, "Failed to get sensor mode (BME680 Error Code %d)", this->bme680_status_); } } } if (!this->bme680_settings_.process_data) { ESP_LOGV(TAG, "Data processing not required"); return; } struct bme680_field_data data; this->bme680_status_ = bme680_get_sensor_data(&data, &this->bme680_); if (this->bme680_status_ != BME680_OK) { ESP_LOGW(TAG, "Failed to get sensor data (BME680 Error Code %d)", this->bme680_status_); return; } if (!(data.status & BME680_NEW_DATA_MSK)) { ESP_LOGD(TAG, "BME680 did not report new data"); return; } bsec_input_t inputs[BSEC_MAX_PHYSICAL_SENSOR]; // Temperature, Pressure, Humidity & Gas Resistance uint8_t num_inputs = 0; if (this->bme680_settings_.process_data & BSEC_PROCESS_TEMPERATURE) { inputs[num_inputs].sensor_id = BSEC_INPUT_TEMPERATURE; inputs[num_inputs].signal = data.temperature / 100.0f; inputs[num_inputs].time_stamp = curr_time_ns; num_inputs++; // Temperature offset from the real temperature due to external heat sources inputs[num_inputs].sensor_id = BSEC_INPUT_HEATSOURCE; inputs[num_inputs].signal = this->temperature_offset_; inputs[num_inputs].time_stamp = curr_time_ns; num_inputs++; } if (this->bme680_settings_.process_data & BSEC_PROCESS_HUMIDITY) { inputs[num_inputs].sensor_id = BSEC_INPUT_HUMIDITY; inputs[num_inputs].signal = data.humidity / 1000.0f; inputs[num_inputs].time_stamp = curr_time_ns; num_inputs++; } if (this->bme680_settings_.process_data & BSEC_PROCESS_PRESSURE) { inputs[num_inputs].sensor_id = BSEC_INPUT_PRESSURE; inputs[num_inputs].signal = data.pressure; inputs[num_inputs].time_stamp = curr_time_ns; num_inputs++; } if (this->bme680_settings_.process_data & BSEC_PROCESS_GAS) { if (data.status & BME680_GASM_VALID_MSK) { inputs[num_inputs].sensor_id = BSEC_INPUT_GASRESISTOR; inputs[num_inputs].signal = data.gas_resistance; inputs[num_inputs].time_stamp = curr_time_ns; num_inputs++; } else { ESP_LOGD(TAG, "BME680 did not report gas data"); } } if (num_inputs < 1) { ESP_LOGD(TAG, "No signal inputs available for BSEC"); return; } // Restore BSEC library state // The reinit_bsec_lib_ method is computationally expensive: it takes 1200÷2900 microseconds on a ESP32. // It can be skipped entirely when there is only one device (since the BSEC library won't be shared) if (BME680BSECComponent::instances.size() > 1) { int res = this->reinit_bsec_lib_(); if (res != 0) return; // Now that the BSEC library has been re-initialized, bsec_sensor_control *NEEDS* to be called in order to support // multiple devices with a different set of enabled sensors (even if the bme680_settings_ data is not used) this->bsec_status_ = bsec_sensor_control(curr_time_ns, &this->bme680_settings_); if (this->bsec_status_ < BSEC_OK) { ESP_LOGW(TAG, "Failed to fetch sensor control settings (BSEC Error Code %d)", this->bsec_status_); return; } } bsec_output_t outputs[BSEC_NUMBER_OUTPUTS]; uint8_t num_outputs = BSEC_NUMBER_OUTPUTS; this->bsec_status_ = bsec_do_steps(inputs, num_inputs, outputs, &num_outputs); if (this->bsec_status_ != BSEC_OK) { ESP_LOGW(TAG, "BSEC failed to process signals (BSEC Error Code %d)", this->bsec_status_); return; } ESP_LOGV(TAG, "%s: after bsec_do_steps: num_inputs=%d num_outputs=%d", this->device_id_.c_str(), num_inputs, num_outputs); // Since we are about to go "out of scope" in the loop, take a snapshot of the state now so we can restore it later if (BME680BSECComponent::instances.size() > 1) this->snapshot_state_(); if (num_outputs < 1) { ESP_LOGD(TAG, "No signal outputs provided by BSEC"); return; } this->publish_(outputs, num_outputs); } void BME680BSECComponent::publish_(const bsec_output_t *outputs, uint8_t num_outputs) { ESP_LOGV(TAG, "%s: Queuing sensor state publish actions", this->device_id_.c_str()); for (uint8_t i = 0; i < num_outputs; i++) { float signal = outputs[i].signal; switch (outputs[i].sensor_id) { case BSEC_OUTPUT_IAQ: case BSEC_OUTPUT_STATIC_IAQ: { uint8_t accuracy = outputs[i].accuracy; this->queue_push_([this, signal]() { this->publish_sensor_(this->iaq_sensor_, signal); }); this->queue_push_([this, accuracy]() { this->publish_sensor_(this->iaq_accuracy_text_sensor_, IAQ_ACCURACY_STATES[accuracy]); }); this->queue_push_([this, accuracy]() { this->publish_sensor_(this->iaq_accuracy_sensor_, accuracy, true); }); // Queue up an opportunity to save state this->queue_push_([this, accuracy]() { this->save_state_(accuracy); }); } break; case BSEC_OUTPUT_CO2_EQUIVALENT: this->queue_push_([this, signal]() { this->publish_sensor_(this->co2_equivalent_sensor_, signal); }); break; case BSEC_OUTPUT_BREATH_VOC_EQUIVALENT: this->queue_push_([this, signal]() { this->publish_sensor_(this->breath_voc_equivalent_sensor_, signal); }); break; case BSEC_OUTPUT_RAW_PRESSURE: this->queue_push_([this, signal]() { this->publish_sensor_(this->pressure_sensor_, signal / 100.0f); }); break; case BSEC_OUTPUT_RAW_GAS: this->queue_push_([this, signal]() { this->publish_sensor_(this->gas_resistance_sensor_, signal); }); break; case BSEC_OUTPUT_SENSOR_HEAT_COMPENSATED_TEMPERATURE: this->queue_push_([this, signal]() { this->publish_sensor_(this->temperature_sensor_, signal); }); break; case BSEC_OUTPUT_SENSOR_HEAT_COMPENSATED_HUMIDITY: this->queue_push_([this, signal]() { this->publish_sensor_(this->humidity_sensor_, signal); }); break; } } } int64_t BME680BSECComponent::get_time_ns_() { int64_t time_ms = millis(); if (this->last_time_ms_ > time_ms) { this->millis_overflow_counter_++; } this->last_time_ms_ = time_ms; return (time_ms + ((int64_t) this->millis_overflow_counter_ << 32)) * INT64_C(1000000); } void BME680BSECComponent::publish_sensor_(sensor::Sensor *sensor, float value, bool change_only) { if (!sensor || (change_only && sensor->has_state() && sensor->state == value)) { return; } sensor->publish_state(value); } void BME680BSECComponent::publish_sensor_(text_sensor::TextSensor *sensor, const std::string &value) { if (!sensor || (sensor->has_state() && sensor->state == value)) { return; } sensor->publish_state(value); } // Communication function - read // First parameter is the "dev_id" member of our "bme680_" object, which is passed-back here as-is int8_t BME680BSECComponent::read_bytes_wrapper(uint8_t devid, uint8_t a_register, uint8_t *data, uint16_t len) { BME680BSECComponent *inst = instances[devid]; // Use the I2CDevice::read_bytes method to perform the actual I2C register read return inst->read_bytes(a_register, data, len) ? 0 : -1; } // Communication function - write // First parameter is the "dev_id" member of our "bme680_" object, which is passed-back here as-is int8_t BME680BSECComponent::write_bytes_wrapper(uint8_t devid, uint8_t a_register, uint8_t *data, uint16_t len) { BME680BSECComponent *inst = instances[devid]; // Use the I2CDevice::write_bytes method to perform the actual I2C register write return inst->write_bytes(a_register, data, len) ? 0 : -1; } void BME680BSECComponent::delay_ms(uint32_t period) { ESP_LOGV(TAG, "Delaying for %ums", period); delay(period); } // Fetch the BSEC library state and save it in the bsec_state_data_ member (volatile memory) // Used to share the library when using more than one sensor void BME680BSECComponent::snapshot_state_() { uint32_t num_serialized_state = BSEC_MAX_STATE_BLOB_SIZE; this->bsec_status_ = bsec_get_state(0, this->bsec_state_data_, BSEC_MAX_STATE_BLOB_SIZE, this->work_buffer_, sizeof(this->work_buffer_), &num_serialized_state); if (this->bsec_status_ != BSEC_OK) { ESP_LOGW(TAG, "%s: Failed to fetch BSEC library state for snapshot (BSEC Error Code %d)", this->device_id_.c_str(), this->bsec_status_); return; } this->bsec_state_data_valid_ = true; } // Restores the BSEC library state from a snapshot in memory // Used to share the library when using more than one sensor void BME680BSECComponent::restore_state_() { if (!this->bsec_state_data_valid_) { ESP_LOGV(TAG, "%s: BSEC state data NOT valid, aborting restore_state_()", this->device_id_.c_str()); return; } this->bsec_status_ = bsec_set_state(this->bsec_state_data_, BSEC_MAX_STATE_BLOB_SIZE, this->work_buffer_, sizeof(this->work_buffer_)); if (this->bsec_status_ != BSEC_OK) { ESP_LOGW(TAG, "Failed to restore BSEC library state (BSEC Error Code %d)", this->bsec_status_); return; } } int BME680BSECComponent::reinit_bsec_lib_() { this->bsec_status_ = bsec_init(); if (this->bsec_status_ != BSEC_OK) { this->mark_failed(); return -1; } this->set_config_(); if (this->bsec_status_ != BSEC_OK) { this->mark_failed(); return -2; } this->restore_state_(); this->update_subscription_(); if (this->bsec_status_ != BSEC_OK) { this->mark_failed(); return -3; } return 0; } void BME680BSECComponent::load_state_() { uint32_t hash = fnv1_hash("bme680_bsec_state_" + this->device_id_); this->bsec_state_ = global_preferences->make_preference(hash, true); if (!this->bsec_state_.load(&this->bsec_state_data_)) { // No saved BSEC library state available return; } ESP_LOGV(TAG, "%s: Loading BSEC library state", this->device_id_.c_str()); this->bsec_status_ = bsec_set_state(this->bsec_state_data_, BSEC_MAX_STATE_BLOB_SIZE, this->work_buffer_, sizeof(this->work_buffer_)); if (this->bsec_status_ != BSEC_OK) { ESP_LOGW(TAG, "%s: Failed to load BSEC library state (BSEC Error Code %d)", this->device_id_.c_str(), this->bsec_status_); return; } // All OK: set the BSEC state data as valid this->bsec_state_data_valid_ = true; ESP_LOGI(TAG, "%s: Loaded BSEC library state", this->device_id_.c_str()); } void BME680BSECComponent::save_state_(uint8_t accuracy) { if (accuracy < 3 || (millis() - this->last_state_save_ms_ < this->state_save_interval_ms_)) { return; } if (BME680BSECComponent::instances.size() <= 1) { // When a single device is in use, no snapshot is taken regularly so one is taken now // On multiple devices, a snapshot is taken at every loop, so there is no need to take one here this->snapshot_state_(); } if (!this->bsec_state_data_valid_) return; ESP_LOGV(TAG, "%s: Saving state", this->device_id_.c_str()); if (!this->bsec_state_.save(&this->bsec_state_data_)) { ESP_LOGW(TAG, "Failed to save state"); return; } this->last_state_save_ms_ = millis(); ESP_LOGI(TAG, "Saved state"); } #endif } // namespace bme680_bsec } // namespace esphome