#ifdef USE_ESP32 #include "esp32_ble_tracker.h" #include "esphome/core/application.h" #include "esphome/core/defines.h" #include "esphome/core/hal.h" #include "esphome/core/helpers.h" #include "esphome/core/log.h" #ifndef CONFIG_ESP_HOSTED_ENABLE_BT_BLUEDROID #include #endif #include #include #include #include #include #include #include #include #ifdef USE_OTA #include "esphome/components/ota/ota_backend.h" #endif #ifdef USE_ESP32_BLE_SOFTWARE_COEXISTENCE #include #endif #define MBEDTLS_AES_ALT #include // bt_trace.h #undef TAG namespace esphome::esp32_ble_tracker { static const char *const TAG = "esp32_ble_tracker"; ESP32BLETracker *global_esp32_ble_tracker = nullptr; // NOLINT(cppcoreguidelines-avoid-non-const-global-variables) const char *client_state_to_string(ClientState state) { switch (state) { case ClientState::INIT: return "INIT"; case ClientState::DISCONNECTING: return "DISCONNECTING"; case ClientState::IDLE: return "IDLE"; case ClientState::DISCOVERED: return "DISCOVERED"; case ClientState::CONNECTING: return "CONNECTING"; case ClientState::CONNECTED: return "CONNECTED"; case ClientState::ESTABLISHED: return "ESTABLISHED"; default: return "UNKNOWN"; } } float ESP32BLETracker::get_setup_priority() const { return setup_priority::AFTER_BLUETOOTH; } void ESP32BLETracker::setup() { if (this->parent_->is_failed()) { this->mark_failed(); ESP_LOGE(TAG, "BLE Tracker was marked failed by ESP32BLE"); return; } global_esp32_ble_tracker = this; #ifdef USE_OTA ota::get_global_ota_callback()->add_on_state_callback( [this](ota::OTAState state, float progress, uint8_t error, ota::OTAComponent *comp) { if (state == ota::OTA_STARTED) { this->stop_scan(); #ifdef ESPHOME_ESP32_BLE_TRACKER_CLIENT_COUNT for (auto *client : this->clients_) { client->disconnect(); } #endif } }); #endif } void ESP32BLETracker::loop() { if (!this->parent_->is_active()) { this->ble_was_disabled_ = true; return; } else if (this->ble_was_disabled_) { this->ble_was_disabled_ = false; // If the BLE stack was disabled, we need to start the scan again. if (this->scan_continuous_) { this->start_scan(); } } // Check for scan timeout - moved here from scheduler to avoid false reboots // when the loop is blocked if (this->scanner_state_ == ScannerState::RUNNING) { switch (this->scan_timeout_state_) { case ScanTimeoutState::MONITORING: { uint32_t now = App.get_loop_component_start_time(); uint32_t timeout_ms = this->scan_duration_ * 2000; // Robust time comparison that handles rollover correctly // This works because unsigned arithmetic wraps around predictably if ((now - this->scan_start_time_) > timeout_ms) { // First time we've seen the timeout exceeded - wait one more loop iteration // This ensures all components have had a chance to process pending events // This is because esp32_ble may not have run yet and called // gap_scan_event_handler yet when the loop unblocks ESP_LOGW(TAG, "Scan timeout exceeded"); this->scan_timeout_state_ = ScanTimeoutState::EXCEEDED_WAIT; } break; } case ScanTimeoutState::EXCEEDED_WAIT: // We've waited at least one full loop iteration, and scan is still running ESP_LOGE(TAG, "Scan never terminated, rebooting"); App.reboot(); break; case ScanTimeoutState::INACTIVE: // This case should be unreachable - scanner and timeout states are always synchronized break; } } ClientStateCounts counts = this->count_client_states_(); if (counts != this->client_state_counts_) { this->client_state_counts_ = counts; ESP_LOGD(TAG, "connecting: %d, discovered: %d, disconnecting: %d", this->client_state_counts_.connecting, this->client_state_counts_.discovered, this->client_state_counts_.disconnecting); } if (this->scanner_state_ == ScannerState::FAILED || (this->scan_set_param_failed_ && this->scanner_state_ == ScannerState::RUNNING)) { this->handle_scanner_failure_(); } /* Avoid starting the scanner if: - we are already scanning - we are connecting to a device - we are disconnecting from a device Otherwise the scanner could fail to ever start again and our only way to recover is to reboot. https://github.com/espressif/esp-idf/issues/6688 */ if (this->scanner_state_ == ScannerState::IDLE && !counts.connecting && !counts.disconnecting && !counts.discovered) { #ifdef USE_ESP32_BLE_SOFTWARE_COEXISTENCE this->update_coex_preference_(false); #endif if (this->scan_continuous_) { this->start_scan_(false); // first = false } } // If there is a discovered client and no connecting // clients, then promote the discovered client to ready to connect. // We check both RUNNING and IDLE states because: // - RUNNING: gap_scan_event_handler initiates stop_scan_() but promotion can happen immediately // - IDLE: Scanner has already stopped (naturally or by gap_scan_event_handler) if (counts.discovered && !counts.connecting && (this->scanner_state_ == ScannerState::RUNNING || this->scanner_state_ == ScannerState::IDLE)) { this->try_promote_discovered_clients_(); } } void ESP32BLETracker::start_scan() { this->start_scan_(true); } void ESP32BLETracker::stop_scan() { ESP_LOGD(TAG, "Stopping scan."); this->scan_continuous_ = false; this->stop_scan_(); } void ESP32BLETracker::ble_before_disabled_event_handler() { this->stop_scan_(); } void ESP32BLETracker::stop_scan_() { if (this->scanner_state_ != ScannerState::RUNNING && this->scanner_state_ != ScannerState::FAILED) { ESP_LOGE(TAG, "Cannot stop scan: %s", this->scanner_state_to_string_(this->scanner_state_)); return; } // Reset timeout state machine when stopping scan this->scan_timeout_state_ = ScanTimeoutState::INACTIVE; this->set_scanner_state_(ScannerState::STOPPING); esp_err_t err = esp_ble_gap_stop_scanning(); if (err != ESP_OK) { ESP_LOGE(TAG, "esp_ble_gap_stop_scanning failed: %d", err); return; } } void ESP32BLETracker::start_scan_(bool first) { if (!this->parent_->is_active()) { ESP_LOGW(TAG, "Cannot start scan while ESP32BLE is disabled."); return; } if (this->scanner_state_ != ScannerState::IDLE) { this->log_unexpected_state_("start scan", ScannerState::IDLE); return; } this->set_scanner_state_(ScannerState::STARTING); ESP_LOGD(TAG, "Starting scan, set scanner state to STARTING."); if (!first) { #ifdef ESPHOME_ESP32_BLE_TRACKER_LISTENER_COUNT for (auto *listener : this->listeners_) listener->on_scan_end(); #endif } #ifdef USE_ESP32_BLE_DEVICE this->already_discovered_.clear(); #endif this->scan_params_.scan_type = this->scan_active_ ? BLE_SCAN_TYPE_ACTIVE : BLE_SCAN_TYPE_PASSIVE; this->scan_params_.own_addr_type = BLE_ADDR_TYPE_PUBLIC; this->scan_params_.scan_filter_policy = BLE_SCAN_FILTER_ALLOW_ALL; this->scan_params_.scan_interval = this->scan_interval_; this->scan_params_.scan_window = this->scan_window_; // Start timeout monitoring in loop() instead of using scheduler // This prevents false reboots when the loop is blocked this->scan_start_time_ = App.get_loop_component_start_time(); this->scan_timeout_state_ = ScanTimeoutState::MONITORING; esp_err_t err = esp_ble_gap_set_scan_params(&this->scan_params_); if (err != ESP_OK) { ESP_LOGE(TAG, "esp_ble_gap_set_scan_params failed: %d", err); return; } err = esp_ble_gap_start_scanning(this->scan_duration_); if (err != ESP_OK) { ESP_LOGE(TAG, "esp_ble_gap_start_scanning failed: %d", err); return; } } void ESP32BLETracker::register_client(ESPBTClient *client) { #ifdef ESPHOME_ESP32_BLE_TRACKER_CLIENT_COUNT client->app_id = ++this->app_id_; this->clients_.push_back(client); this->recalculate_advertisement_parser_types(); #endif } void ESP32BLETracker::register_listener(ESPBTDeviceListener *listener) { #ifdef ESPHOME_ESP32_BLE_TRACKER_LISTENER_COUNT listener->set_parent(this); this->listeners_.push_back(listener); this->recalculate_advertisement_parser_types(); #endif } void ESP32BLETracker::recalculate_advertisement_parser_types() { this->raw_advertisements_ = false; this->parse_advertisements_ = false; #ifdef ESPHOME_ESP32_BLE_TRACKER_LISTENER_COUNT for (auto *listener : this->listeners_) { if (listener->get_advertisement_parser_type() == AdvertisementParserType::PARSED_ADVERTISEMENTS) { this->parse_advertisements_ = true; } else { this->raw_advertisements_ = true; } } #endif #ifdef ESPHOME_ESP32_BLE_TRACKER_CLIENT_COUNT for (auto *client : this->clients_) { if (client->get_advertisement_parser_type() == AdvertisementParserType::PARSED_ADVERTISEMENTS) { this->parse_advertisements_ = true; } else { this->raw_advertisements_ = true; } } #endif } void ESP32BLETracker::gap_event_handler(esp_gap_ble_cb_event_t event, esp_ble_gap_cb_param_t *param) { // Note: This handler is called from the main loop context, not directly from the BT task. // The esp32_ble component queues events via enqueue_ble_event() and processes them in loop(). switch (event) { case ESP_GAP_BLE_SCAN_PARAM_SET_COMPLETE_EVT: this->gap_scan_set_param_complete_(param->scan_param_cmpl); break; case ESP_GAP_BLE_SCAN_START_COMPLETE_EVT: this->gap_scan_start_complete_(param->scan_start_cmpl); break; case ESP_GAP_BLE_SCAN_STOP_COMPLETE_EVT: this->gap_scan_stop_complete_(param->scan_stop_cmpl); break; default: break; } // Forward all events to clients (scan results are handled separately via gap_scan_event_handler) #ifdef ESPHOME_ESP32_BLE_TRACKER_CLIENT_COUNT for (auto *client : this->clients_) { client->gap_event_handler(event, param); } #endif } void ESP32BLETracker::gap_scan_event_handler(const BLEScanResult &scan_result) { // Note: This handler is called from the main loop context via esp32_ble's event queue. // We process advertisements immediately instead of buffering them. ESP_LOGVV(TAG, "gap_scan_result - event %d", scan_result.search_evt); if (scan_result.search_evt == ESP_GAP_SEARCH_INQ_RES_EVT) { // Process the scan result immediately this->process_scan_result_(scan_result); } else if (scan_result.search_evt == ESP_GAP_SEARCH_INQ_CMPL_EVT) { // Scan finished on its own if (this->scanner_state_ != ScannerState::RUNNING) { this->log_unexpected_state_("scan complete", ScannerState::RUNNING); } // Scan completed naturally, perform cleanup and transition to IDLE this->cleanup_scan_state_(false); } } void ESP32BLETracker::gap_scan_set_param_complete_(const esp_ble_gap_cb_param_t::ble_scan_param_cmpl_evt_param ¶m) { // Called from main loop context via gap_event_handler after being queued from BT task ESP_LOGV(TAG, "gap_scan_set_param_complete - status %d", param.status); if (param.status == ESP_BT_STATUS_DONE) { this->scan_set_param_failed_ = ESP_BT_STATUS_SUCCESS; } else { this->scan_set_param_failed_ = param.status; } } void ESP32BLETracker::gap_scan_start_complete_(const esp_ble_gap_cb_param_t::ble_scan_start_cmpl_evt_param ¶m) { // Called from main loop context via gap_event_handler after being queued from BT task ESP_LOGV(TAG, "gap_scan_start_complete - status %d", param.status); this->scan_start_failed_ = param.status; if (this->scanner_state_ != ScannerState::STARTING) { this->log_unexpected_state_("start complete", ScannerState::STARTING); } if (param.status == ESP_BT_STATUS_SUCCESS) { this->scan_start_fail_count_ = 0; this->set_scanner_state_(ScannerState::RUNNING); } else { this->set_scanner_state_(ScannerState::FAILED); if (this->scan_start_fail_count_ != std::numeric_limits::max()) { this->scan_start_fail_count_++; } } } void ESP32BLETracker::gap_scan_stop_complete_(const esp_ble_gap_cb_param_t::ble_scan_stop_cmpl_evt_param ¶m) { // Called from main loop context via gap_event_handler after being queued from BT task // This allows us to safely transition to IDLE state and perform cleanup without race conditions ESP_LOGV(TAG, "gap_scan_stop_complete - status %d", param.status); if (this->scanner_state_ != ScannerState::STOPPING) { this->log_unexpected_state_("stop complete", ScannerState::STOPPING); } // Perform cleanup and transition to IDLE this->cleanup_scan_state_(true); } void ESP32BLETracker::gattc_event_handler(esp_gattc_cb_event_t event, esp_gatt_if_t gattc_if, esp_ble_gattc_cb_param_t *param) { #ifdef ESPHOME_ESP32_BLE_TRACKER_CLIENT_COUNT for (auto *client : this->clients_) { client->gattc_event_handler(event, gattc_if, param); } #endif } void ESP32BLETracker::set_scanner_state_(ScannerState state) { this->scanner_state_ = state; this->scanner_state_callbacks_.call(state); } #ifdef USE_ESP32_BLE_DEVICE ESPBLEiBeacon::ESPBLEiBeacon(const uint8_t *data) { memcpy(&this->beacon_data_, data, sizeof(beacon_data_)); } optional ESPBLEiBeacon::from_manufacturer_data(const ServiceData &data) { if (!data.uuid.contains(0x4C, 0x00)) return {}; if (data.data.size() != 23) return {}; return ESPBLEiBeacon(data.data.data()); } void ESPBTDevice::parse_scan_rst(const BLEScanResult &scan_result) { this->scan_result_ = &scan_result; for (uint8_t i = 0; i < ESP_BD_ADDR_LEN; i++) this->address_[i] = scan_result.bda[i]; this->address_type_ = static_cast(scan_result.ble_addr_type); this->rssi_ = scan_result.rssi; // Parse advertisement data directly uint8_t total_len = scan_result.adv_data_len + scan_result.scan_rsp_len; this->parse_adv_(scan_result.ble_adv, total_len); #ifdef ESPHOME_LOG_HAS_VERY_VERBOSE ESP_LOGVV(TAG, "Parse Result:"); const char *address_type; switch (this->address_type_) { case BLE_ADDR_TYPE_PUBLIC: address_type = "PUBLIC"; break; case BLE_ADDR_TYPE_RANDOM: address_type = "RANDOM"; break; case BLE_ADDR_TYPE_RPA_PUBLIC: address_type = "RPA_PUBLIC"; break; case BLE_ADDR_TYPE_RPA_RANDOM: address_type = "RPA_RANDOM"; break; default: address_type = "UNKNOWN"; break; } ESP_LOGVV(TAG, " Address: %02X:%02X:%02X:%02X:%02X:%02X (%s)", this->address_[0], this->address_[1], this->address_[2], this->address_[3], this->address_[4], this->address_[5], address_type); ESP_LOGVV(TAG, " RSSI: %d", this->rssi_); ESP_LOGVV(TAG, " Name: '%s'", this->name_.c_str()); for (auto &it : this->tx_powers_) { ESP_LOGVV(TAG, " TX Power: %d", it); } if (this->appearance_.has_value()) { ESP_LOGVV(TAG, " Appearance: %u", *this->appearance_); } if (this->ad_flag_.has_value()) { ESP_LOGVV(TAG, " Ad Flag: %u", *this->ad_flag_); } for (auto &uuid : this->service_uuids_) { ESP_LOGVV(TAG, " Service UUID: %s", uuid.to_string().c_str()); } for (auto &data : this->manufacturer_datas_) { auto ibeacon = ESPBLEiBeacon::from_manufacturer_data(data); if (ibeacon.has_value()) { ESP_LOGVV(TAG, " Manufacturer iBeacon:"); ESP_LOGVV(TAG, " UUID: %s", ibeacon.value().get_uuid().to_string().c_str()); ESP_LOGVV(TAG, " Major: %u", ibeacon.value().get_major()); ESP_LOGVV(TAG, " Minor: %u", ibeacon.value().get_minor()); ESP_LOGVV(TAG, " TXPower: %d", ibeacon.value().get_signal_power()); } else { ESP_LOGVV(TAG, " Manufacturer ID: %s, data: %s", data.uuid.to_string().c_str(), format_hex_pretty(data.data).c_str()); } } for (auto &data : this->service_datas_) { ESP_LOGVV(TAG, " Service data:"); ESP_LOGVV(TAG, " UUID: %s", data.uuid.to_string().c_str()); ESP_LOGVV(TAG, " Data: %s", format_hex_pretty(data.data).c_str()); } ESP_LOGVV(TAG, " Adv data: %s", format_hex_pretty(scan_result.ble_adv, scan_result.adv_data_len + scan_result.scan_rsp_len).c_str()); #endif } void ESPBTDevice::parse_adv_(const uint8_t *payload, uint8_t len) { size_t offset = 0; while (offset + 2 < len) { const uint8_t field_length = payload[offset++]; // First byte is length of adv record if (field_length == 0) { continue; // Possible zero padded advertisement data } // first byte of adv record is adv record type const uint8_t record_type = payload[offset++]; const uint8_t *record = &payload[offset]; const uint8_t record_length = field_length - 1; offset += record_length; // See also Generic Access Profile Assigned Numbers: // https://www.bluetooth.com/specifications/assigned-numbers/generic-access-profile/ See also ADVERTISING AND SCAN // RESPONSE DATA FORMAT: https://www.bluetooth.com/specifications/bluetooth-core-specification/ (vol 3, part C, 11) // See also Core Specification Supplement: https://www.bluetooth.com/specifications/bluetooth-core-specification/ // (called CSS here) switch (record_type) { case ESP_BLE_AD_TYPE_NAME_SHORT: case ESP_BLE_AD_TYPE_NAME_CMPL: { // CSS 1.2 LOCAL NAME // "The Local Name data type shall be the same as, or a shortened version of, the local name assigned to the // device." CSS 1: Optional in this context; shall not appear more than once in a block. // SHORTENED LOCAL NAME // "The Shortened Local Name data type defines a shortened version of the Local Name data type. The Shortened // Local Name data type shall not be used to advertise a name that is longer than the Local Name data type." if (record_length > this->name_.length()) { this->name_ = std::string(reinterpret_cast(record), record_length); } break; } case ESP_BLE_AD_TYPE_TX_PWR: { // CSS 1.5 TX POWER LEVEL // "The TX Power Level data type indicates the transmitted power level of the packet containing the data type." // CSS 1: Optional in this context (may appear more than once in a block). this->tx_powers_.push_back(*payload); break; } case ESP_BLE_AD_TYPE_APPEARANCE: { // CSS 1.12 APPEARANCE // "The Appearance data type defines the external appearance of the device." // See also https://www.bluetooth.com/specifications/gatt/characteristics/ // CSS 1: Optional in this context; shall not appear more than once in a block and shall not appear in both // the AD and SRD of the same extended advertising interval. this->appearance_ = *reinterpret_cast(record); break; } case ESP_BLE_AD_TYPE_FLAG: { // CSS 1.3 FLAGS // "The Flags data type contains one bit Boolean flags. The Flags data type shall be included when any of the // Flag bits are non-zero and the advertising packet is connectable, otherwise the Flags data type may be // omitted." // CSS 1: Optional in this context; shall not appear more than once in a block. this->ad_flag_ = *record; break; } // CSS 1.1 SERVICE UUID // The Service UUID data type is used to include a list of Service or Service Class UUIDs. // There are six data types defined for the three sizes of Service UUIDs that may be returned: // CSS 1: Optional in this context (may appear more than once in a block). case ESP_BLE_AD_TYPE_16SRV_CMPL: case ESP_BLE_AD_TYPE_16SRV_PART: { // • 16-bit Bluetooth Service UUIDs for (uint8_t i = 0; i < record_length / 2; i++) { this->service_uuids_.push_back(ESPBTUUID::from_uint16(*reinterpret_cast(record + 2 * i))); } break; } case ESP_BLE_AD_TYPE_32SRV_CMPL: case ESP_BLE_AD_TYPE_32SRV_PART: { // • 32-bit Bluetooth Service UUIDs for (uint8_t i = 0; i < record_length / 4; i++) { this->service_uuids_.push_back(ESPBTUUID::from_uint32(*reinterpret_cast(record + 4 * i))); } break; } case ESP_BLE_AD_TYPE_128SRV_CMPL: case ESP_BLE_AD_TYPE_128SRV_PART: { // • Global 128-bit Service UUIDs this->service_uuids_.push_back(ESPBTUUID::from_raw(record)); break; } case ESP_BLE_AD_MANUFACTURER_SPECIFIC_TYPE: { // CSS 1.4 MANUFACTURER SPECIFIC DATA // "The Manufacturer Specific data type is used for manufacturer specific data. The first two data octets shall // contain a company identifier from Assigned Numbers. The interpretation of any other octets within the data // shall be defined by the manufacturer specified by the company identifier." // CSS 1: Optional in this context (may appear more than once in a block). if (record_length < 2) { ESP_LOGV(TAG, "Record length too small for ESP_BLE_AD_MANUFACTURER_SPECIFIC_TYPE"); break; } ServiceData data{}; data.uuid = ESPBTUUID::from_uint16(*reinterpret_cast(record)); data.data.assign(record + 2UL, record + record_length); this->manufacturer_datas_.push_back(data); break; } // CSS 1.11 SERVICE DATA // "The Service Data data type consists of a service UUID with the data associated with that service." // CSS 1: Optional in this context (may appear more than once in a block). case ESP_BLE_AD_TYPE_SERVICE_DATA: { // «Service Data - 16 bit UUID» // Size: 2 or more octets // The first 2 octets contain the 16 bit Service UUID fol- lowed by additional service data if (record_length < 2) { ESP_LOGV(TAG, "Record length too small for ESP_BLE_AD_TYPE_SERVICE_DATA"); break; } ServiceData data{}; data.uuid = ESPBTUUID::from_uint16(*reinterpret_cast(record)); data.data.assign(record + 2UL, record + record_length); this->service_datas_.push_back(data); break; } case ESP_BLE_AD_TYPE_32SERVICE_DATA: { // «Service Data - 32 bit UUID» // Size: 4 or more octets // The first 4 octets contain the 32 bit Service UUID fol- lowed by additional service data if (record_length < 4) { ESP_LOGV(TAG, "Record length too small for ESP_BLE_AD_TYPE_32SERVICE_DATA"); break; } ServiceData data{}; data.uuid = ESPBTUUID::from_uint32(*reinterpret_cast(record)); data.data.assign(record + 4UL, record + record_length); this->service_datas_.push_back(data); break; } case ESP_BLE_AD_TYPE_128SERVICE_DATA: { // «Service Data - 128 bit UUID» // Size: 16 or more octets // The first 16 octets contain the 128 bit Service UUID followed by additional service data if (record_length < 16) { ESP_LOGV(TAG, "Record length too small for ESP_BLE_AD_TYPE_128SERVICE_DATA"); break; } ServiceData data{}; data.uuid = ESPBTUUID::from_raw(record); data.data.assign(record + 16UL, record + record_length); this->service_datas_.push_back(data); break; } case ESP_BLE_AD_TYPE_INT_RANGE: // Avoid logging this as it's very verbose break; default: { ESP_LOGV(TAG, "Unhandled type: advType: 0x%02x", record_type); break; } } } } std::string ESPBTDevice::address_str() const { char mac[18]; format_mac_addr_upper(this->address_, mac); return mac; } uint64_t ESPBTDevice::address_uint64() const { return esp32_ble::ble_addr_to_uint64(this->address_); } #endif // USE_ESP32_BLE_DEVICE void ESP32BLETracker::dump_config() { ESP_LOGCONFIG(TAG, "BLE Tracker:"); ESP_LOGCONFIG(TAG, " Scan Duration: %" PRIu32 " s\n" " Scan Interval: %.1f ms\n" " Scan Window: %.1f ms\n" " Scan Type: %s\n" " Continuous Scanning: %s", this->scan_duration_, this->scan_interval_ * 0.625f, this->scan_window_ * 0.625f, this->scan_active_ ? "ACTIVE" : "PASSIVE", YESNO(this->scan_continuous_)); ESP_LOGCONFIG(TAG, " Scanner State: %s", this->scanner_state_to_string_(this->scanner_state_)); ESP_LOGCONFIG(TAG, " Connecting: %d, discovered: %d, disconnecting: %d", this->client_state_counts_.connecting, this->client_state_counts_.discovered, this->client_state_counts_.disconnecting); if (this->scan_start_fail_count_) { ESP_LOGCONFIG(TAG, " Scan Start Fail Count: %d", this->scan_start_fail_count_); } } #ifdef USE_ESP32_BLE_DEVICE void ESP32BLETracker::print_bt_device_info(const ESPBTDevice &device) { const uint64_t address = device.address_uint64(); for (auto &disc : this->already_discovered_) { if (disc == address) return; } this->already_discovered_.push_back(address); ESP_LOGD(TAG, "Found device %s RSSI=%d", device.address_str().c_str(), device.get_rssi()); const char *address_type_s; switch (device.get_address_type()) { case BLE_ADDR_TYPE_PUBLIC: address_type_s = "PUBLIC"; break; case BLE_ADDR_TYPE_RANDOM: address_type_s = "RANDOM"; break; case BLE_ADDR_TYPE_RPA_PUBLIC: address_type_s = "RPA_PUBLIC"; break; case BLE_ADDR_TYPE_RPA_RANDOM: address_type_s = "RPA_RANDOM"; break; default: address_type_s = "UNKNOWN"; break; } ESP_LOGD(TAG, " Address Type: %s", address_type_s); if (!device.get_name().empty()) { ESP_LOGD(TAG, " Name: '%s'", device.get_name().c_str()); } for (auto &tx_power : device.get_tx_powers()) { ESP_LOGD(TAG, " TX Power: %d", tx_power); } } bool ESPBTDevice::resolve_irk(const uint8_t *irk) const { uint8_t ecb_key[16]; uint8_t ecb_plaintext[16]; uint8_t ecb_ciphertext[16]; uint64_t addr64 = esp32_ble::ble_addr_to_uint64(this->address_); memcpy(&ecb_key, irk, 16); memset(&ecb_plaintext, 0, 16); ecb_plaintext[13] = (addr64 >> 40) & 0xff; ecb_plaintext[14] = (addr64 >> 32) & 0xff; ecb_plaintext[15] = (addr64 >> 24) & 0xff; mbedtls_aes_context ctx = {0, 0, {0}}; mbedtls_aes_init(&ctx); if (mbedtls_aes_setkey_enc(&ctx, ecb_key, 128) != 0) { mbedtls_aes_free(&ctx); return false; } if (mbedtls_aes_crypt_ecb(&ctx, ESP_AES_ENCRYPT, ecb_plaintext, ecb_ciphertext) != 0) { mbedtls_aes_free(&ctx); return false; } mbedtls_aes_free(&ctx); return ecb_ciphertext[15] == (addr64 & 0xff) && ecb_ciphertext[14] == ((addr64 >> 8) & 0xff) && ecb_ciphertext[13] == ((addr64 >> 16) & 0xff); } #endif // USE_ESP32_BLE_DEVICE void ESP32BLETracker::process_scan_result_(const BLEScanResult &scan_result) { // Process raw advertisements if (this->raw_advertisements_) { #ifdef ESPHOME_ESP32_BLE_TRACKER_LISTENER_COUNT for (auto *listener : this->listeners_) { listener->parse_devices(&scan_result, 1); } #endif #ifdef ESPHOME_ESP32_BLE_TRACKER_CLIENT_COUNT for (auto *client : this->clients_) { client->parse_devices(&scan_result, 1); } #endif } // Process parsed advertisements if (this->parse_advertisements_) { #ifdef USE_ESP32_BLE_DEVICE ESPBTDevice device; device.parse_scan_rst(scan_result); bool found = false; #ifdef ESPHOME_ESP32_BLE_TRACKER_LISTENER_COUNT for (auto *listener : this->listeners_) { if (listener->parse_device(device)) found = true; } #endif #ifdef ESPHOME_ESP32_BLE_TRACKER_CLIENT_COUNT for (auto *client : this->clients_) { if (client->parse_device(device)) { found = true; } } #endif if (!found && !this->scan_continuous_) { this->print_bt_device_info(device); } #endif // USE_ESP32_BLE_DEVICE } } void ESP32BLETracker::cleanup_scan_state_(bool is_stop_complete) { ESP_LOGD(TAG, "Scan %scomplete, set scanner state to IDLE.", is_stop_complete ? "stop " : ""); #ifdef USE_ESP32_BLE_DEVICE this->already_discovered_.clear(); #endif // Reset timeout state machine instead of cancelling scheduler timeout this->scan_timeout_state_ = ScanTimeoutState::INACTIVE; #ifdef ESPHOME_ESP32_BLE_TRACKER_LISTENER_COUNT for (auto *listener : this->listeners_) listener->on_scan_end(); #endif this->set_scanner_state_(ScannerState::IDLE); } void ESP32BLETracker::handle_scanner_failure_() { this->stop_scan_(); if (this->scan_start_fail_count_ == std::numeric_limits::max()) { ESP_LOGE(TAG, "Scan could not restart after %d attempts, rebooting to restore stack (IDF)", std::numeric_limits::max()); App.reboot(); } if (this->scan_start_failed_) { ESP_LOGE(TAG, "Scan start failed: %d", this->scan_start_failed_); this->scan_start_failed_ = ESP_BT_STATUS_SUCCESS; } if (this->scan_set_param_failed_) { ESP_LOGE(TAG, "Scan set param failed: %d", this->scan_set_param_failed_); this->scan_set_param_failed_ = ESP_BT_STATUS_SUCCESS; } } void ESP32BLETracker::try_promote_discovered_clients_() { // Only promote the first discovered client to avoid multiple simultaneous connections #ifdef ESPHOME_ESP32_BLE_TRACKER_CLIENT_COUNT for (auto *client : this->clients_) { if (client->state() != ClientState::DISCOVERED) { continue; } if (this->scanner_state_ == ScannerState::RUNNING) { ESP_LOGD(TAG, "Stopping scan to make connection"); this->stop_scan_(); // Don't wait for scan stop complete - promote immediately. // This is safe because ESP-IDF processes BLE commands sequentially through its internal mailbox queue. // This guarantees that the stop scan command will be fully processed before any subsequent connect command, // preventing race conditions or overlapping operations. } ESP_LOGD(TAG, "Promoting client to connect"); #ifdef USE_ESP32_BLE_SOFTWARE_COEXISTENCE this->update_coex_preference_(true); #endif client->connect(); break; } #endif } const char *ESP32BLETracker::scanner_state_to_string_(ScannerState state) const { switch (state) { case ScannerState::IDLE: return "IDLE"; case ScannerState::STARTING: return "STARTING"; case ScannerState::RUNNING: return "RUNNING"; case ScannerState::STOPPING: return "STOPPING"; case ScannerState::FAILED: return "FAILED"; default: return "UNKNOWN"; } } void ESP32BLETracker::log_unexpected_state_(const char *operation, ScannerState expected_state) const { ESP_LOGE(TAG, "Unexpected state: %s on %s, expected: %s", this->scanner_state_to_string_(this->scanner_state_), operation, this->scanner_state_to_string_(expected_state)); } #ifdef USE_ESP32_BLE_SOFTWARE_COEXISTENCE void ESP32BLETracker::update_coex_preference_(bool force_ble) { #ifndef CONFIG_ESP_HOSTED_ENABLE_BT_BLUEDROID if (force_ble && !this->coex_prefer_ble_) { ESP_LOGD(TAG, "Setting coexistence to Bluetooth to make connection."); this->coex_prefer_ble_ = true; esp_coex_preference_set(ESP_COEX_PREFER_BT); // Prioritize Bluetooth } else if (!force_ble && this->coex_prefer_ble_) { ESP_LOGD(TAG, "Setting coexistence preference to balanced."); this->coex_prefer_ble_ = false; esp_coex_preference_set(ESP_COEX_PREFER_BALANCE); // Reset to default } #endif // CONFIG_ESP_HOSTED_ENABLE_BT_BLUEDROID } #endif } // namespace esphome::esp32_ble_tracker #endif // USE_ESP32