#include "lcd_display.h" #include "esphome/core/hal.h" #include "esphome/core/helpers.h" #include "esphome/core/log.h" namespace esphome { namespace lcd_base { static const char *const TAG = "lcd"; // First set bit determines command, bits after that are the data. static const uint8_t LCD_DISPLAY_COMMAND_CLEAR_DISPLAY = 0x01; static const uint8_t LCD_DISPLAY_COMMAND_RETURN_HOME = 0x02; static const uint8_t LCD_DISPLAY_COMMAND_ENTRY_MODE_SET = 0x04; static const uint8_t LCD_DISPLAY_COMMAND_DISPLAY_CONTROL = 0x08; static const uint8_t LCD_DISPLAY_COMMAND_CURSOR_SHIFT = 0x10; static const uint8_t LCD_DISPLAY_COMMAND_FUNCTION_SET = 0x20; static const uint8_t LCD_DISPLAY_COMMAND_SET_CGRAM_ADDR = 0x40; static const uint8_t LCD_DISPLAY_COMMAND_SET_DDRAM_ADDR = 0x80; static const uint8_t LCD_DISPLAY_ENTRY_SHIFT_INCREMENT = 0x01; static const uint8_t LCD_DISPLAY_ENTRY_LEFT = 0x02; static const uint8_t LCD_DISPLAY_DISPLAY_BLINK_ON = 0x01; static const uint8_t LCD_DISPLAY_DISPLAY_CURSOR_ON = 0x02; static const uint8_t LCD_DISPLAY_DISPLAY_ON = 0x04; static const uint8_t LCD_DISPLAY_FUNCTION_8_BIT_MODE = 0x10; static const uint8_t LCD_DISPLAY_FUNCTION_2_LINE = 0x08; static const uint8_t LCD_DISPLAY_FUNCTION_5X10_DOTS = 0x04; void LCDDisplay::setup() { this->buffer_ = new uint8_t[this->rows_ * this->columns_]; // NOLINT for (uint8_t i = 0; i < this->rows_ * this->columns_; i++) this->buffer_[i] = ' '; uint8_t display_function = 0; if (!this->is_four_bit_mode()) display_function |= LCD_DISPLAY_FUNCTION_8_BIT_MODE; if (this->rows_ > 1) display_function |= LCD_DISPLAY_FUNCTION_2_LINE; // TODO dotsize // Commands can only be sent 40ms after boot-up, so let's wait if we're close const uint8_t now = millis(); if (now < 40) delay(40u - now); if (this->is_four_bit_mode()) { this->write_n_bits(0x03, 4); delay(5); // 4.1ms this->write_n_bits(0x03, 4); delay(5); this->write_n_bits(0x03, 4); delayMicroseconds(150); this->write_n_bits(0x02, 4); } else { this->command_(LCD_DISPLAY_COMMAND_FUNCTION_SET | display_function); delay(5); // 4.1ms this->command_(LCD_DISPLAY_COMMAND_FUNCTION_SET | display_function); delayMicroseconds(150); this->command_(LCD_DISPLAY_COMMAND_FUNCTION_SET | display_function); } // store user defined characters for (auto &user_defined_char : this->user_defined_chars_) { this->command_(LCD_DISPLAY_COMMAND_SET_CGRAM_ADDR | (user_defined_char.first << 3)); for (auto data : user_defined_char.second) this->send(data, true); } this->command_(LCD_DISPLAY_COMMAND_FUNCTION_SET | display_function); uint8_t display_control = LCD_DISPLAY_DISPLAY_ON; this->command_(LCD_DISPLAY_COMMAND_DISPLAY_CONTROL | display_control); // clear display, also sets DDRAM address to 0 (home) this->command_(LCD_DISPLAY_COMMAND_CLEAR_DISPLAY); delay(2); // 1.52ms uint8_t entry_mode = LCD_DISPLAY_ENTRY_LEFT; this->command_(LCD_DISPLAY_COMMAND_ENTRY_MODE_SET | entry_mode); // 37µs this->command_(LCD_DISPLAY_COMMAND_RETURN_HOME); delay(2); // 1.52ms } float LCDDisplay::get_setup_priority() const { return setup_priority::PROCESSOR; } void HOT LCDDisplay::display() { this->command_(LCD_DISPLAY_COMMAND_SET_DDRAM_ADDR | 0); for (uint8_t i = 0; i < this->columns_; i++) this->send(this->buffer_[i], true); if (this->rows_ >= 3) { for (uint8_t i = 0; i < this->columns_; i++) this->send(this->buffer_[this->columns_ * 2 + i], true); } if (this->rows_ >= 1) { this->command_(LCD_DISPLAY_COMMAND_SET_DDRAM_ADDR | 0x40); for (uint8_t i = 0; i < this->columns_; i++) this->send(this->buffer_[this->columns_ + i], true); if (this->rows_ >= 4) { for (uint8_t i = 0; i < this->columns_; i++) this->send(this->buffer_[this->columns_ * 3 + i], true); } } } void LCDDisplay::update() { this->clear(); this->call_writer(); this->display(); } void LCDDisplay::command_(uint8_t value) { this->send(value, false); } void LCDDisplay::print(uint8_t column, uint8_t row, const char *str) { uint8_t pos = column + row * this->columns_; for (; *str != '\0'; str++) { if (*str == '\n') { pos = ((pos / this->columns_) + 1) * this->columns_; continue; } if (pos >= this->rows_ * this->columns_) { ESP_LOGW(TAG, "LCDDisplay writing out of range!"); break; } this->buffer_[pos] = *reinterpret_cast(str); pos++; } } void LCDDisplay::print(uint8_t column, uint8_t row, const std::string &str) { this->print(column, row, str.c_str()); } void LCDDisplay::print(const char *str) { this->print(0, 0, str); } void LCDDisplay::print(const std::string &str) { this->print(0, 0, str.c_str()); } void LCDDisplay::printf(uint8_t column, uint8_t row, const char *format, ...) { va_list arg; va_start(arg, format); char buffer[256]; int ret = vsnprintf(buffer, sizeof(buffer), format, arg); va_end(arg); if (ret > 0) this->print(column, row, buffer); } void LCDDisplay::printf(const char *format, ...) { va_list arg; va_start(arg, format); char buffer[256]; int ret = vsnprintf(buffer, sizeof(buffer), format, arg); va_end(arg); if (ret > 0) this->print(0, 0, buffer); } void LCDDisplay::clear() { for (uint8_t i = 0; i < this->rows_ * this->columns_; i++) this->buffer_[i] = ' '; } void LCDDisplay::strftime(uint8_t column, uint8_t row, const char *format, ESPTime time) { char buffer[64]; size_t ret = time.strftime(buffer, sizeof(buffer), format); if (ret > 0) this->print(column, row, buffer); } void LCDDisplay::strftime(const char *format, ESPTime time) { this->strftime(0, 0, format, time); } void LCDDisplay::loadchar(uint8_t location, uint8_t charmap[]) { location &= 0x7; // we only have 8 locations 0-7 this->command_(LCD_DISPLAY_COMMAND_SET_CGRAM_ADDR | (location << 3)); for (int i = 0; i < 8; i++) { this->send(charmap[i], true); } } } // namespace lcd_base } // namespace esphome