mirror of
https://github.com/esphome/esphome.git
synced 2025-10-26 20:53:50 +00:00
[light] Eliminate dimming undershoot during addressable light transition (#11471)
This commit is contained in:
@@ -61,6 +61,10 @@ void AddressableLightTransformer::start() {
|
|||||||
this->target_color_ *= to_uint8_scale(end_values.get_brightness() * end_values.get_state());
|
this->target_color_ *= to_uint8_scale(end_values.get_brightness() * end_values.get_state());
|
||||||
}
|
}
|
||||||
|
|
||||||
|
inline constexpr uint8_t subtract_scaled_difference(uint8_t a, uint8_t b, int32_t scale) {
|
||||||
|
return uint8_t(int32_t(a) - (((int32_t(a) - int32_t(b)) * scale) / 256));
|
||||||
|
}
|
||||||
|
|
||||||
optional<LightColorValues> AddressableLightTransformer::apply() {
|
optional<LightColorValues> AddressableLightTransformer::apply() {
|
||||||
float smoothed_progress = LightTransformer::smoothed_progress(this->get_progress_());
|
float smoothed_progress = LightTransformer::smoothed_progress(this->get_progress_());
|
||||||
|
|
||||||
@@ -74,38 +78,37 @@ optional<LightColorValues> AddressableLightTransformer::apply() {
|
|||||||
// all LEDs, we use the current state of each LED as the start.
|
// all LEDs, we use the current state of each LED as the start.
|
||||||
|
|
||||||
// We can't use a direct lerp smoothing here though - that would require creating a copy of the original
|
// We can't use a direct lerp smoothing here though - that would require creating a copy of the original
|
||||||
// state of each LED at the start of the transition.
|
// state of each LED at the start of the transition. Instead, we "fake" the look of lerp by calculating
|
||||||
// Instead, we "fake" the look of the LERP by using an exponential average over time and using
|
// the delta between the current state and the target state, assuming that the delta represents the rest
|
||||||
// dynamically-calculated alpha values to match the look.
|
// of the transition that was to be applied as of the previous transition step, and scaling the delta for
|
||||||
|
// what should be left after the current transition step. In this manner, the delta decays to zero as the
|
||||||
|
// transition progresses.
|
||||||
|
//
|
||||||
|
// Here's an example of how the algorithm progresses in discrete steps:
|
||||||
|
//
|
||||||
|
// At time = 0.00, 0% complete, 100% remaining, 100% will remain after this step, so the scale is 100% / 100% = 100%.
|
||||||
|
// At time = 0.10, 0% complete, 100% remaining, 90% will remain after this step, so the scale is 90% / 100% = 90%.
|
||||||
|
// At time = 0.20, 10% complete, 90% remaining, 80% will remain after this step, so the scale is 80% / 90% = 88.9%.
|
||||||
|
// At time = 0.50, 20% complete, 80% remaining, 50% will remain after this step, so the scale is 50% / 80% = 62.5%.
|
||||||
|
// At time = 0.90, 50% complete, 50% remaining, 10% will remain after this step, so the scale is 10% / 50% = 20%.
|
||||||
|
// At time = 0.91, 90% complete, 10% remaining, 9% will remain after this step, so the scale is 9% / 10% = 90%.
|
||||||
|
// At time = 1.00, 91% complete, 9% remaining, 0% will remain after this step, so the scale is 0% / 9% = 0%.
|
||||||
|
//
|
||||||
|
// Because the color values are quantized to 8 bit resolution after each step, the transition may appear
|
||||||
|
// non-linear when applying small deltas.
|
||||||
|
|
||||||
float denom = (1.0f - smoothed_progress);
|
if (smoothed_progress > this->last_transition_progress_ && this->last_transition_progress_ < 1.f) {
|
||||||
float alpha = denom == 0.0f ? 1.0f : (smoothed_progress - this->last_transition_progress_) / denom;
|
int32_t scale = int32_t(256.f * std::max((1.f - smoothed_progress) / (1.f - this->last_transition_progress_), 0.f));
|
||||||
|
for (auto led : this->light_) {
|
||||||
// We need to use a low-resolution alpha here which makes the transition set in only after ~half of the length
|
led.set_rgbw(subtract_scaled_difference(this->target_color_.red, led.get_red(), scale),
|
||||||
// We solve this by accumulating the fractional part of the alpha over time.
|
subtract_scaled_difference(this->target_color_.green, led.get_green(), scale),
|
||||||
float alpha255 = alpha * 255.0f;
|
subtract_scaled_difference(this->target_color_.blue, led.get_blue(), scale),
|
||||||
float alpha255int = floorf(alpha255);
|
subtract_scaled_difference(this->target_color_.white, led.get_white(), scale));
|
||||||
float alpha255remainder = alpha255 - alpha255int;
|
}
|
||||||
|
this->last_transition_progress_ = smoothed_progress;
|
||||||
this->accumulated_alpha_ += alpha255remainder;
|
this->light_.schedule_show();
|
||||||
float alpha_add = floorf(this->accumulated_alpha_);
|
|
||||||
this->accumulated_alpha_ -= alpha_add;
|
|
||||||
|
|
||||||
alpha255 += alpha_add;
|
|
||||||
alpha255 = clamp(alpha255, 0.0f, 255.0f);
|
|
||||||
auto alpha8 = static_cast<uint8_t>(alpha255);
|
|
||||||
|
|
||||||
if (alpha8 != 0) {
|
|
||||||
uint8_t inv_alpha8 = 255 - alpha8;
|
|
||||||
Color add = this->target_color_ * alpha8;
|
|
||||||
|
|
||||||
for (auto led : this->light_)
|
|
||||||
led.set(add + led.get() * inv_alpha8);
|
|
||||||
}
|
}
|
||||||
|
|
||||||
this->last_transition_progress_ = smoothed_progress;
|
|
||||||
this->light_.schedule_show();
|
|
||||||
|
|
||||||
return {};
|
return {};
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|||||||
@@ -113,7 +113,6 @@ class AddressableLightTransformer : public LightTransformer {
|
|||||||
protected:
|
protected:
|
||||||
AddressableLight &light_;
|
AddressableLight &light_;
|
||||||
float last_transition_progress_{0.0f};
|
float last_transition_progress_{0.0f};
|
||||||
float accumulated_alpha_{0.0f};
|
|
||||||
Color target_color_{};
|
Color target_color_{};
|
||||||
};
|
};
|
||||||
|
|
||||||
|
|||||||
Reference in New Issue
Block a user