1
0
mirror of https://github.com/esphome/esphome.git synced 2025-10-27 21:23:48 +00:00

Merge branch 'dev' into enum_mask_helper

This commit is contained in:
J. Nick Koston
2025-10-21 22:48:22 -10:00
committed by GitHub
4 changed files with 60 additions and 63 deletions

View File

@@ -524,13 +524,23 @@ ClimateCall ClimateDeviceRestoreState::to_call(Climate *climate) {
if (traits.has_feature_flags(climate::CLIMATE_SUPPORTS_TARGET_HUMIDITY)) {
call.set_target_humidity(this->target_humidity);
}
if (traits.get_supports_fan_modes() || !traits.get_supported_custom_fan_modes().empty()) {
if (this->uses_custom_fan_mode) {
if (this->custom_fan_mode < traits.get_supported_custom_fan_modes().size()) {
call.fan_mode_.reset();
call.custom_fan_mode_ = *std::next(traits.get_supported_custom_fan_modes().cbegin(), this->custom_fan_mode);
}
} else if (traits.supports_fan_mode(this->fan_mode)) {
call.set_fan_mode(this->fan_mode);
}
if (traits.get_supports_presets() || !traits.get_supported_custom_presets().empty()) {
if (this->uses_custom_preset) {
if (this->custom_preset < traits.get_supported_custom_presets().size()) {
call.preset_.reset();
call.custom_preset_ = *std::next(traits.get_supported_custom_presets().cbegin(), this->custom_preset);
}
} else if (traits.supports_preset(this->preset)) {
call.set_preset(this->preset);
}
if (traits.get_supports_swing_modes()) {
if (traits.supports_swing_mode(this->swing_mode)) {
call.set_swing_mode(this->swing_mode);
}
return call;
@@ -549,41 +559,25 @@ void ClimateDeviceRestoreState::apply(Climate *climate) {
if (traits.has_feature_flags(climate::CLIMATE_SUPPORTS_TARGET_HUMIDITY)) {
climate->target_humidity = this->target_humidity;
}
if (traits.get_supports_fan_modes() && !this->uses_custom_fan_mode) {
if (this->uses_custom_fan_mode) {
if (this->custom_fan_mode < traits.get_supported_custom_fan_modes().size()) {
climate->fan_mode.reset();
climate->custom_fan_mode = *std::next(traits.get_supported_custom_fan_modes().cbegin(), this->custom_fan_mode);
}
} else if (traits.supports_fan_mode(this->fan_mode)) {
climate->fan_mode = this->fan_mode;
climate->custom_fan_mode.reset();
}
if (!traits.get_supported_custom_fan_modes().empty() && this->uses_custom_fan_mode) {
// std::set has consistent order (lexicographic for strings)
const auto &modes = traits.get_supported_custom_fan_modes();
if (custom_fan_mode < modes.size()) {
size_t i = 0;
for (const auto &mode : modes) {
if (i == this->custom_fan_mode) {
climate->custom_fan_mode = mode;
break;
if (this->uses_custom_preset) {
if (this->custom_preset < traits.get_supported_custom_presets().size()) {
climate->preset.reset();
climate->custom_preset = *std::next(traits.get_supported_custom_presets().cbegin(), this->custom_preset);
}
i++;
}
}
}
if (traits.get_supports_presets() && !this->uses_custom_preset) {
} else if (traits.supports_preset(this->preset)) {
climate->preset = this->preset;
climate->custom_preset.reset();
}
if (!traits.get_supported_custom_presets().empty() && uses_custom_preset) {
// std::set has consistent order (lexicographic for strings)
const auto &presets = traits.get_supported_custom_presets();
if (custom_preset < presets.size()) {
size_t i = 0;
for (const auto &preset : presets) {
if (i == this->custom_preset) {
climate->custom_preset = preset;
break;
}
i++;
}
}
}
if (traits.get_supports_swing_modes()) {
if (traits.supports_swing_mode(this->swing_mode)) {
climate->swing_mode = this->swing_mode;
}
climate->publish_state();

View File

@@ -33,6 +33,7 @@ class Climate;
class ClimateCall {
public:
explicit ClimateCall(Climate *parent) : parent_(parent) {}
friend struct ClimateDeviceRestoreState;
/// Set the mode of the climate device.
ClimateCall &set_mode(ClimateMode mode);

View File

@@ -61,6 +61,10 @@ void AddressableLightTransformer::start() {
this->target_color_ *= to_uint8_scale(end_values.get_brightness() * end_values.get_state());
}
inline constexpr uint8_t subtract_scaled_difference(uint8_t a, uint8_t b, int32_t scale) {
return uint8_t(int32_t(a) - (((int32_t(a) - int32_t(b)) * scale) / 256));
}
optional<LightColorValues> AddressableLightTransformer::apply() {
float smoothed_progress = LightTransformer::smoothed_progress(this->get_progress_());
@@ -74,37 +78,36 @@ optional<LightColorValues> AddressableLightTransformer::apply() {
// all LEDs, we use the current state of each LED as the start.
// We can't use a direct lerp smoothing here though - that would require creating a copy of the original
// state of each LED at the start of the transition.
// Instead, we "fake" the look of the LERP by using an exponential average over time and using
// dynamically-calculated alpha values to match the look.
// state of each LED at the start of the transition. Instead, we "fake" the look of lerp by calculating
// the delta between the current state and the target state, assuming that the delta represents the rest
// of the transition that was to be applied as of the previous transition step, and scaling the delta for
// what should be left after the current transition step. In this manner, the delta decays to zero as the
// transition progresses.
//
// Here's an example of how the algorithm progresses in discrete steps:
//
// At time = 0.00, 0% complete, 100% remaining, 100% will remain after this step, so the scale is 100% / 100% = 100%.
// At time = 0.10, 0% complete, 100% remaining, 90% will remain after this step, so the scale is 90% / 100% = 90%.
// At time = 0.20, 10% complete, 90% remaining, 80% will remain after this step, so the scale is 80% / 90% = 88.9%.
// At time = 0.50, 20% complete, 80% remaining, 50% will remain after this step, so the scale is 50% / 80% = 62.5%.
// At time = 0.90, 50% complete, 50% remaining, 10% will remain after this step, so the scale is 10% / 50% = 20%.
// At time = 0.91, 90% complete, 10% remaining, 9% will remain after this step, so the scale is 9% / 10% = 90%.
// At time = 1.00, 91% complete, 9% remaining, 0% will remain after this step, so the scale is 0% / 9% = 0%.
//
// Because the color values are quantized to 8 bit resolution after each step, the transition may appear
// non-linear when applying small deltas.
float denom = (1.0f - smoothed_progress);
float alpha = denom == 0.0f ? 1.0f : (smoothed_progress - this->last_transition_progress_) / denom;
// We need to use a low-resolution alpha here which makes the transition set in only after ~half of the length
// We solve this by accumulating the fractional part of the alpha over time.
float alpha255 = alpha * 255.0f;
float alpha255int = floorf(alpha255);
float alpha255remainder = alpha255 - alpha255int;
this->accumulated_alpha_ += alpha255remainder;
float alpha_add = floorf(this->accumulated_alpha_);
this->accumulated_alpha_ -= alpha_add;
alpha255 += alpha_add;
alpha255 = clamp(alpha255, 0.0f, 255.0f);
auto alpha8 = static_cast<uint8_t>(alpha255);
if (alpha8 != 0) {
uint8_t inv_alpha8 = 255 - alpha8;
Color add = this->target_color_ * alpha8;
for (auto led : this->light_)
led.set(add + led.get() * inv_alpha8);
if (smoothed_progress > this->last_transition_progress_ && this->last_transition_progress_ < 1.f) {
int32_t scale = int32_t(256.f * std::max((1.f - smoothed_progress) / (1.f - this->last_transition_progress_), 0.f));
for (auto led : this->light_) {
led.set_rgbw(subtract_scaled_difference(this->target_color_.red, led.get_red(), scale),
subtract_scaled_difference(this->target_color_.green, led.get_green(), scale),
subtract_scaled_difference(this->target_color_.blue, led.get_blue(), scale),
subtract_scaled_difference(this->target_color_.white, led.get_white(), scale));
}
this->last_transition_progress_ = smoothed_progress;
this->light_.schedule_show();
}
return {};
}

View File

@@ -113,7 +113,6 @@ class AddressableLightTransformer : public LightTransformer {
protected:
AddressableLight &light_;
float last_transition_progress_{0.0f};
float accumulated_alpha_{0.0f};
Color target_color_{};
};