mirror of
https://github.com/esphome/esphome.git
synced 2025-10-30 06:33:51 +00:00
@@ -1,187 +1,322 @@
|
||||
#include "xiaomi_ble.h"
|
||||
#include "esphome/core/log.h"
|
||||
#include "esphome/core/helpers.h"
|
||||
|
||||
#ifdef ARDUINO_ARCH_ESP32
|
||||
|
||||
#include <vector>
|
||||
#include "mbedtls/ccm.h"
|
||||
|
||||
namespace esphome {
|
||||
namespace xiaomi_ble {
|
||||
|
||||
static const char *TAG = "xiaomi_ble";
|
||||
|
||||
bool parse_xiaomi_data_byte(uint8_t data_type, const uint8_t *data, uint8_t data_length, XiaomiParseResult &result) {
|
||||
switch (data_type) {
|
||||
case 0x0D: { // temperature+humidity, 4 bytes, 16-bit signed integer (LE) each, 0.1 °C, 0.1 %
|
||||
if (data_length != 4)
|
||||
return false;
|
||||
const int16_t temperature = uint16_t(data[0]) | (uint16_t(data[1]) << 8);
|
||||
const int16_t humidity = uint16_t(data[2]) | (uint16_t(data[3]) << 8);
|
||||
result.temperature = temperature / 10.0f;
|
||||
result.humidity = humidity / 10.0f;
|
||||
return true;
|
||||
}
|
||||
case 0x0A: { // battery, 1 byte, 8-bit unsigned integer, 1 %
|
||||
if (data_length != 1)
|
||||
return false;
|
||||
result.battery_level = data[0];
|
||||
return true;
|
||||
}
|
||||
case 0x06: { // humidity, 2 bytes, 16-bit signed integer (LE), 0.1 %
|
||||
if (data_length != 2)
|
||||
return false;
|
||||
const int16_t humidity = uint16_t(data[0]) | (uint16_t(data[1]) << 8);
|
||||
result.humidity = humidity / 10.0f;
|
||||
return true;
|
||||
}
|
||||
case 0x04: { // temperature, 2 bytes, 16-bit signed integer (LE), 0.1 °C
|
||||
if (data_length != 2)
|
||||
return false;
|
||||
const int16_t temperature = uint16_t(data[0]) | (uint16_t(data[1]) << 8);
|
||||
result.temperature = temperature / 10.0f;
|
||||
return true;
|
||||
}
|
||||
case 0x09: { // conductivity, 2 bytes, 16-bit unsigned integer (LE), 1 µS/cm
|
||||
if (data_length != 2)
|
||||
return false;
|
||||
const uint16_t conductivity = uint16_t(data[0]) | (uint16_t(data[1]) << 8);
|
||||
result.conductivity = conductivity;
|
||||
return true;
|
||||
}
|
||||
case 0x07: { // illuminance, 3 bytes, 24-bit unsigned integer (LE), 1 lx
|
||||
if (data_length != 3)
|
||||
return false;
|
||||
const uint32_t illuminance = uint32_t(data[0]) | (uint32_t(data[1]) << 8) | (uint32_t(data[2]) << 16);
|
||||
result.illuminance = illuminance;
|
||||
return true;
|
||||
}
|
||||
case 0x08: { // soil moisture, 1 byte, 8-bit unsigned integer, 1 %
|
||||
if (data_length != 1)
|
||||
return false;
|
||||
result.moisture = data[0];
|
||||
return true;
|
||||
}
|
||||
default:
|
||||
return false;
|
||||
}
|
||||
}
|
||||
bool parse_xiaomi_service_data(XiaomiParseResult &result, const esp32_ble_tracker::ServiceData &service_data) {
|
||||
if (!service_data.uuid.contains(0x95, 0xFE)) {
|
||||
// ESP_LOGVV(TAG, "Xiaomi no service data UUID magic bytes");
|
||||
bool parse_xiaomi_message(const std::vector<uint8_t> &message, XiaomiParseResult &result) {
|
||||
result.has_encryption = (message[0] & 0x08) ? true : false; // update encryption status
|
||||
if (result.has_encryption) {
|
||||
ESP_LOGVV(TAG, "parse_xiaomi_message(): payload is encrypted, stop reading message.");
|
||||
return false;
|
||||
}
|
||||
|
||||
const auto raw = service_data.data;
|
||||
|
||||
if (raw.size() < 14) {
|
||||
// ESP_LOGVV(TAG, "Xiaomi service data too short!");
|
||||
return false;
|
||||
}
|
||||
|
||||
bool is_lywsdcgq = (raw[1] & 0x20) == 0x20 && raw[2] == 0xAA && raw[3] == 0x01;
|
||||
bool is_hhccjcy01 = (raw[1] & 0x20) == 0x20 && raw[2] == 0x98 && raw[3] == 0x00;
|
||||
bool is_lywsd02 = (raw[1] & 0x20) == 0x20 && raw[2] == 0x5b && raw[3] == 0x04;
|
||||
bool is_cgg1 = ((raw[1] & 0x30) == 0x30 || (raw[1] & 0x20) == 0x20) && raw[2] == 0x47 && raw[3] == 0x03;
|
||||
|
||||
if (!is_lywsdcgq && !is_hhccjcy01 && !is_lywsd02 && !is_cgg1) {
|
||||
// ESP_LOGVV(TAG, "Xiaomi no magic bytes");
|
||||
return false;
|
||||
}
|
||||
|
||||
result.type = XiaomiParseResult::TYPE_HHCCJCY01;
|
||||
if (is_lywsdcgq) {
|
||||
result.type = XiaomiParseResult::TYPE_LYWSDCGQ;
|
||||
} else if (is_lywsd02) {
|
||||
result.type = XiaomiParseResult::TYPE_LYWSD02;
|
||||
} else if (is_cgg1) {
|
||||
result.type = XiaomiParseResult::TYPE_CGG1;
|
||||
}
|
||||
|
||||
uint8_t raw_offset = is_lywsdcgq || is_cgg1 ? 11 : 12;
|
||||
|
||||
// Data point specs
|
||||
// Byte 0: type
|
||||
// Byte 1: fixed 0x10
|
||||
// Byte 2: length
|
||||
// Byte 3..3+len-1: data point value
|
||||
|
||||
const uint8_t *raw_data = &raw[raw_offset];
|
||||
uint8_t data_offset = 0;
|
||||
uint8_t data_length = raw.size() - raw_offset;
|
||||
bool success = false;
|
||||
const uint8_t *raw = message.data() + result.raw_offset;
|
||||
const uint8_t *data = raw + 3;
|
||||
const uint8_t data_length = raw[2];
|
||||
|
||||
while (true) {
|
||||
if (data_length < 4)
|
||||
// at least 4 bytes required
|
||||
// type, fixed 0x10, length, 1 byte value
|
||||
break;
|
||||
|
||||
const uint8_t datapoint_type = raw_data[data_offset + 0];
|
||||
const uint8_t datapoint_length = raw_data[data_offset + 2];
|
||||
|
||||
if (data_length < 3 + datapoint_length)
|
||||
// 3 fixed bytes plus value length
|
||||
break;
|
||||
|
||||
const uint8_t *datapoint_data = &raw_data[data_offset + 3];
|
||||
|
||||
if (parse_xiaomi_data_byte(datapoint_type, datapoint_data, datapoint_length, result))
|
||||
success = true;
|
||||
|
||||
data_length -= data_offset + 3 + datapoint_length;
|
||||
data_offset += 3 + datapoint_length;
|
||||
}
|
||||
|
||||
return success;
|
||||
}
|
||||
optional<XiaomiParseResult> parse_xiaomi(const esp32_ble_tracker::ESPBTDevice &device) {
|
||||
XiaomiParseResult result;
|
||||
bool success = false;
|
||||
for (auto &service_data : device.get_service_datas()) {
|
||||
if (parse_xiaomi_service_data(result, service_data))
|
||||
success = true;
|
||||
}
|
||||
if (!success)
|
||||
return {};
|
||||
return result;
|
||||
}
|
||||
|
||||
bool XiaomiListener::parse_device(const esp32_ble_tracker::ESPBTDevice &device) {
|
||||
auto res = parse_xiaomi(device);
|
||||
if (!res.has_value())
|
||||
if ((data_length < 1) || (data_length > 4)) {
|
||||
ESP_LOGVV(TAG, "parse_xiaomi_message(): payload has wrong size (%d)!", data_length);
|
||||
return false;
|
||||
|
||||
const char *name = "HHCCJCY01";
|
||||
if (res->type == XiaomiParseResult::TYPE_LYWSDCGQ) {
|
||||
name = "LYWSDCGQ";
|
||||
} else if (res->type == XiaomiParseResult::TYPE_LYWSD02) {
|
||||
name = "LYWSD02";
|
||||
} else if (res->type == XiaomiParseResult::TYPE_CGG1) {
|
||||
name = "CGG1";
|
||||
}
|
||||
|
||||
ESP_LOGD(TAG, "Got Xiaomi %s (%s):", name, device.address_str().c_str());
|
||||
|
||||
if (res->temperature.has_value()) {
|
||||
ESP_LOGD(TAG, " Temperature: %.1f°C", *res->temperature);
|
||||
// motion detection, 1 byte, 8-bit unsigned integer
|
||||
if ((raw[0] == 0x03) && (data_length == 1)) {
|
||||
result.has_motion = (data[0]) ? true : false;
|
||||
}
|
||||
if (res->humidity.has_value()) {
|
||||
ESP_LOGD(TAG, " Humidity: %.1f%%", *res->humidity);
|
||||
// temperature, 2 bytes, 16-bit signed integer (LE), 0.1 °C
|
||||
else if ((raw[0] == 0x04) && (data_length == 2)) {
|
||||
const int16_t temperature = uint16_t(data[0]) | (uint16_t(data[1]) << 8);
|
||||
result.temperature = temperature / 10.0f;
|
||||
}
|
||||
if (res->battery_level.has_value()) {
|
||||
ESP_LOGD(TAG, " Battery Level: %.0f%%", *res->battery_level);
|
||||
// humidity, 2 bytes, 16-bit signed integer (LE), 0.1 %
|
||||
else if ((raw[0] == 0x06) && (data_length == 2)) {
|
||||
const int16_t humidity = uint16_t(data[0]) | (uint16_t(data[1]) << 8);
|
||||
result.humidity = humidity / 10.0f;
|
||||
}
|
||||
if (res->conductivity.has_value()) {
|
||||
ESP_LOGD(TAG, " Conductivity: %.0fµS/cm", *res->conductivity);
|
||||
// illuminance (+ motion), 3 bytes, 24-bit unsigned integer (LE), 1 lx
|
||||
else if (((raw[0] == 0x07) || (raw[0] == 0x0F)) && (data_length == 3)) {
|
||||
const uint32_t illuminance = uint32_t(data[0]) | (uint32_t(data[1]) << 8) | (uint32_t(data[2]) << 16);
|
||||
result.illuminance = illuminance;
|
||||
result.is_light = (illuminance == 100) ? true : false;
|
||||
if (raw[0] == 0x0F)
|
||||
result.has_motion = true;
|
||||
}
|
||||
if (res->illuminance.has_value()) {
|
||||
ESP_LOGD(TAG, " Illuminance: %.0flx", *res->illuminance);
|
||||
// soil moisture, 1 byte, 8-bit unsigned integer, 1 %
|
||||
else if ((raw[0] == 0x08) && (data_length == 1)) {
|
||||
result.moisture = data[0];
|
||||
}
|
||||
if (res->moisture.has_value()) {
|
||||
ESP_LOGD(TAG, " Moisture: %.0f%%", *res->moisture);
|
||||
// conductivity, 2 bytes, 16-bit unsigned integer (LE), 1 µS/cm
|
||||
else if ((raw[0] == 0x09) && (data_length == 2)) {
|
||||
const uint16_t conductivity = uint16_t(data[0]) | (uint16_t(data[1]) << 8);
|
||||
result.conductivity = conductivity;
|
||||
}
|
||||
// battery, 1 byte, 8-bit unsigned integer, 1 %
|
||||
else if ((raw[0] == 0x0A) && (data_length == 1)) {
|
||||
result.battery_level = data[0];
|
||||
}
|
||||
// temperature + humidity, 4 bytes, 16-bit signed integer (LE) each, 0.1 °C, 0.1 %
|
||||
else if ((raw[0] == 0x0D) && (data_length == 4)) {
|
||||
const int16_t temperature = uint16_t(data[0]) | (uint16_t(data[1]) << 8);
|
||||
const int16_t humidity = uint16_t(data[2]) | (uint16_t(data[3]) << 8);
|
||||
result.temperature = temperature / 10.0f;
|
||||
result.humidity = humidity / 10.0f;
|
||||
}
|
||||
// formaldehyde, 2 bytes, 16-bit unsigned integer (LE), 0.01 mg / m3
|
||||
else if ((raw[0] == 0x10) && (data_length == 2)) {
|
||||
const uint16_t formaldehyde = uint16_t(data[0]) | (uint16_t(data[1]) << 8);
|
||||
result.formaldehyde = formaldehyde / 100.0f;
|
||||
}
|
||||
// on/off state, 1 byte, 8-bit unsigned integer
|
||||
else if ((raw[0] == 0x12) && (data_length == 1)) {
|
||||
result.is_active = (data[0]) ? true : false;
|
||||
}
|
||||
// mosquito tablet, 1 byte, 8-bit unsigned integer, 1 %
|
||||
else if ((raw[0] == 0x13) && (data_length == 1)) {
|
||||
result.tablet = data[0];
|
||||
}
|
||||
// idle time since last motion, 4 byte, 32-bit unsigned integer, 1 min
|
||||
else if ((raw[0] == 0x17) && (data_length == 4)) {
|
||||
const uint32_t idle_time =
|
||||
uint32_t(data[0]) | (uint32_t(data[1]) << 8) | (uint32_t(data[2]) << 16) | (uint32_t(data[2]) << 24);
|
||||
result.idle_time = idle_time / 60.0f;
|
||||
result.has_motion = (idle_time) ? false : true;
|
||||
} else {
|
||||
return false;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
optional<XiaomiParseResult> parse_xiaomi_header(const esp32_ble_tracker::ServiceData &service_data) {
|
||||
XiaomiParseResult result;
|
||||
if (!service_data.uuid.contains(0x95, 0xFE)) {
|
||||
ESP_LOGVV(TAG, "parse_xiaomi_header(): no service data UUID magic bytes.");
|
||||
return {};
|
||||
}
|
||||
|
||||
auto raw = service_data.data;
|
||||
result.has_data = (raw[0] & 0x40) ? true : false;
|
||||
result.has_capability = (raw[0] & 0x20) ? true : false;
|
||||
result.has_encryption = (raw[0] & 0x08) ? true : false;
|
||||
|
||||
if (!result.has_data) {
|
||||
ESP_LOGVV(TAG, "parse_xiaomi_header(): service data has no DATA flag.");
|
||||
return {};
|
||||
}
|
||||
|
||||
static uint8_t last_frame_count = 0;
|
||||
if (last_frame_count == raw[4]) {
|
||||
ESP_LOGVV(TAG, "parse_xiaomi_header(): duplicate data packet received (%d).", static_cast<int>(last_frame_count));
|
||||
result.is_duplicate = true;
|
||||
return {};
|
||||
}
|
||||
last_frame_count = raw[4];
|
||||
result.is_duplicate = false;
|
||||
result.raw_offset = result.has_capability ? 12 : 11;
|
||||
|
||||
if ((raw[2] == 0x98) && (raw[3] == 0x00)) { // MiFlora
|
||||
result.type = XiaomiParseResult::TYPE_HHCCJCY01;
|
||||
result.name = "HHCCJCY01";
|
||||
} else if ((raw[2] == 0xaa) && (raw[3] == 0x01)) { // round body, segment LCD
|
||||
result.type = XiaomiParseResult::TYPE_LYWSDCGQ;
|
||||
result.name = "LYWSDCGQ";
|
||||
} else if ((raw[2] == 0x5d) && (raw[3] == 0x01)) { // FlowerPot, RoPot
|
||||
result.type = XiaomiParseResult::TYPE_HHCCPOT002;
|
||||
result.name = "HHCCPOT002";
|
||||
} else if ((raw[2] == 0xdf) && (raw[3] == 0x02)) { // Xiaomi (Honeywell) formaldehyde sensor, OLED display
|
||||
result.type = XiaomiParseResult::TYPE_JQJCY01YM;
|
||||
result.name = "JQJCY01YM";
|
||||
} else if ((raw[2] == 0xdd) && (raw[3] == 0x03)) { // Philips/Xiaomi BLE nightlight
|
||||
result.type = XiaomiParseResult::TYPE_MUE4094RT;
|
||||
result.name = "MUE4094RT";
|
||||
result.raw_offset -= 6;
|
||||
} else if ((raw[2] == 0x47) && (raw[3] == 0x03)) { // round body, e-ink display
|
||||
result.type = XiaomiParseResult::TYPE_CGG1;
|
||||
result.name = "CGG1";
|
||||
} else if ((raw[2] == 0xbc) && (raw[3] == 0x03)) { // VegTrug Grow Care Garden
|
||||
result.type = XiaomiParseResult::TYPE_GCLS002;
|
||||
result.name = "GCLS002";
|
||||
} else if ((raw[2] == 0x5b) && (raw[3] == 0x04)) { // rectangular body, e-ink display
|
||||
result.type = XiaomiParseResult::TYPE_LYWSD02;
|
||||
result.name = "LYWSD02";
|
||||
} else if ((raw[2] == 0x0a) && (raw[3] == 0x04)) { // Mosquito Repellent Smart Version
|
||||
result.type = XiaomiParseResult::TYPE_WX08ZM;
|
||||
result.name = "WX08ZM";
|
||||
} else if ((raw[2] == 0x76) && (raw[3] == 0x05)) { // Cleargrass (Qingping) alarm clock, segment LCD
|
||||
result.type = XiaomiParseResult::TYPE_CGD1;
|
||||
result.name = "CGD1";
|
||||
} else if ((raw[2] == 0x5b) && (raw[3] == 0x05)) { // small square body, segment LCD, encrypted
|
||||
result.type = XiaomiParseResult::TYPE_LYWSD03MMC;
|
||||
result.name = "LYWSD03MMC";
|
||||
} else if ((raw[2] == 0xf6) && (raw[3] == 0x07)) { // Xiaomi-Yeelight BLE nightlight
|
||||
result.type = XiaomiParseResult::TYPE_MJYD02YLA;
|
||||
result.name = "MJYD02YLA";
|
||||
if (raw.size() == 19)
|
||||
result.raw_offset -= 6;
|
||||
} else {
|
||||
ESP_LOGVV(TAG, "parse_xiaomi_header(): unknown device, no magic bytes.");
|
||||
return {};
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
bool decrypt_xiaomi_payload(std::vector<uint8_t> &raw, const uint8_t *bindkey, const uint64_t &address) {
|
||||
if (!((raw.size() == 19) || ((raw.size() >= 22) && (raw.size() <= 24)))) {
|
||||
ESP_LOGVV(TAG, "decrypt_xiaomi_payload(): data packet has wrong size (%d)!", raw.size());
|
||||
ESP_LOGVV(TAG, " Packet : %s", hexencode(raw.data(), raw.size()).c_str());
|
||||
return false;
|
||||
}
|
||||
|
||||
uint8_t mac_reverse[6] = {0};
|
||||
mac_reverse[5] = (uint8_t)(address >> 40);
|
||||
mac_reverse[4] = (uint8_t)(address >> 32);
|
||||
mac_reverse[3] = (uint8_t)(address >> 24);
|
||||
mac_reverse[2] = (uint8_t)(address >> 16);
|
||||
mac_reverse[1] = (uint8_t)(address >> 8);
|
||||
mac_reverse[0] = (uint8_t)(address >> 0);
|
||||
|
||||
XiaomiAESVector vector{.key = {0},
|
||||
.plaintext = {0},
|
||||
.ciphertext = {0},
|
||||
.authdata = {0x11},
|
||||
.iv = {0},
|
||||
.tag = {0},
|
||||
.keysize = 16,
|
||||
.authsize = 1,
|
||||
.datasize = 0,
|
||||
.tagsize = 4,
|
||||
.ivsize = 12};
|
||||
|
||||
vector.datasize = (raw.size() == 19) ? raw.size() - 12 : raw.size() - 18;
|
||||
int cipher_pos = (raw.size() == 19) ? 5 : 11;
|
||||
|
||||
const uint8_t *v = raw.data();
|
||||
|
||||
memcpy(vector.key, bindkey, vector.keysize);
|
||||
memcpy(vector.ciphertext, v + cipher_pos, vector.datasize);
|
||||
memcpy(vector.tag, v + raw.size() - vector.tagsize, vector.tagsize);
|
||||
memcpy(vector.iv, mac_reverse, 6); // MAC address reverse
|
||||
memcpy(vector.iv + 6, v + 2, 3); // sensor type (2) + packet id (1)
|
||||
memcpy(vector.iv + 9, v + raw.size() - 7, 3); // payload counter
|
||||
|
||||
mbedtls_ccm_context ctx;
|
||||
mbedtls_ccm_init(&ctx);
|
||||
|
||||
int ret = mbedtls_ccm_setkey(&ctx, MBEDTLS_CIPHER_ID_AES, vector.key, vector.keysize * 8);
|
||||
if (ret) {
|
||||
ESP_LOGVV(TAG, "decrypt_xiaomi_payload(): mbedtls_ccm_setkey() failed.");
|
||||
mbedtls_ccm_free(&ctx);
|
||||
return false;
|
||||
}
|
||||
|
||||
ret = mbedtls_ccm_auth_decrypt(&ctx, vector.datasize, vector.iv, vector.ivsize, vector.authdata, vector.authsize,
|
||||
vector.ciphertext, vector.plaintext, vector.tag, vector.tagsize);
|
||||
if (ret) {
|
||||
uint8_t mac_address[6] = {0};
|
||||
memcpy(mac_address, mac_reverse + 5, 1);
|
||||
memcpy(mac_address + 1, mac_reverse + 4, 1);
|
||||
memcpy(mac_address + 2, mac_reverse + 3, 1);
|
||||
memcpy(mac_address + 3, mac_reverse + 2, 1);
|
||||
memcpy(mac_address + 4, mac_reverse + 1, 1);
|
||||
memcpy(mac_address + 5, mac_reverse, 1);
|
||||
ESP_LOGVV(TAG, "decrypt_xiaomi_payload(): authenticated decryption failed.");
|
||||
ESP_LOGVV(TAG, " MAC address : %s", hexencode(mac_address, 6).c_str());
|
||||
ESP_LOGVV(TAG, " Packet : %s", hexencode(raw.data(), raw.size()).c_str());
|
||||
ESP_LOGVV(TAG, " Key : %s", hexencode(vector.key, vector.keysize).c_str());
|
||||
ESP_LOGVV(TAG, " Iv : %s", hexencode(vector.iv, vector.ivsize).c_str());
|
||||
ESP_LOGVV(TAG, " Cipher : %s", hexencode(vector.ciphertext, vector.datasize).c_str());
|
||||
ESP_LOGVV(TAG, " Tag : %s", hexencode(vector.tag, vector.tagsize).c_str());
|
||||
mbedtls_ccm_free(&ctx);
|
||||
return false;
|
||||
}
|
||||
|
||||
// replace encrypted payload with plaintext
|
||||
uint8_t *p = vector.plaintext;
|
||||
for (std::vector<uint8_t>::iterator it = raw.begin() + cipher_pos; it != raw.begin() + cipher_pos + vector.datasize;
|
||||
++it) {
|
||||
*it = *(p++);
|
||||
}
|
||||
|
||||
// clear encrypted flag
|
||||
raw[0] &= ~0x08;
|
||||
|
||||
ESP_LOGVV(TAG, "decrypt_xiaomi_payload(): authenticated decryption passed.");
|
||||
ESP_LOGVV(TAG, " Plaintext : %s, Packet : %d", hexencode(raw.data() + cipher_pos, vector.datasize).c_str(),
|
||||
static_cast<int>(raw[4]));
|
||||
|
||||
mbedtls_ccm_free(&ctx);
|
||||
return true;
|
||||
}
|
||||
|
||||
bool report_xiaomi_results(const optional<XiaomiParseResult> &result, const std::string &address) {
|
||||
if (!result.has_value()) {
|
||||
ESP_LOGVV(TAG, "report_xiaomi_results(): no results available.");
|
||||
return false;
|
||||
}
|
||||
|
||||
ESP_LOGD(TAG, "Got Xiaomi %s (%s):", result->name.c_str(), address.c_str());
|
||||
|
||||
if (result->temperature.has_value()) {
|
||||
ESP_LOGD(TAG, " Temperature: %.1f°C", *result->temperature);
|
||||
}
|
||||
if (result->humidity.has_value()) {
|
||||
ESP_LOGD(TAG, " Humidity: %.1f%%", *result->humidity);
|
||||
}
|
||||
if (result->battery_level.has_value()) {
|
||||
ESP_LOGD(TAG, " Battery Level: %.0f%%", *result->battery_level);
|
||||
}
|
||||
if (result->conductivity.has_value()) {
|
||||
ESP_LOGD(TAG, " Conductivity: %.0fµS/cm", *result->conductivity);
|
||||
}
|
||||
if (result->illuminance.has_value()) {
|
||||
ESP_LOGD(TAG, " Illuminance: %.0flx", *result->illuminance);
|
||||
}
|
||||
if (result->moisture.has_value()) {
|
||||
ESP_LOGD(TAG, " Moisture: %.0f%%", *result->moisture);
|
||||
}
|
||||
if (result->tablet.has_value()) {
|
||||
ESP_LOGD(TAG, " Mosquito tablet: %.0f%%", *result->tablet);
|
||||
}
|
||||
if (result->is_active.has_value()) {
|
||||
ESP_LOGD(TAG, " Repellent: %s", (*result->is_active) ? "on" : "off");
|
||||
}
|
||||
if (result->has_motion.has_value()) {
|
||||
ESP_LOGD(TAG, " Motion: %s", (*result->has_motion) ? "yes" : "no");
|
||||
}
|
||||
if (result->is_light.has_value()) {
|
||||
ESP_LOGD(TAG, " Light: %s", (*result->is_light) ? "on" : "off");
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
bool XiaomiListener::parse_device(const esp32_ble_tracker::ESPBTDevice &device) {
|
||||
// Previously the message was parsed twice per packet, once by XiaomiListener::parse_device()
|
||||
// and then again by the respective device class's parse_device() function. Parsing the header
|
||||
// here and then for each device seems to be unneccessary and complicates the duplicate packet filtering.
|
||||
// Hence I disabled the call to parse_xiaomi_header() here and the message parsing is done entirely
|
||||
// in the respecive device instance. The XiaomiListener class is defined in __init__.py and I was not
|
||||
// able to remove it entirely.
|
||||
|
||||
return false; // with true it's not showing device scans
|
||||
}
|
||||
|
||||
} // namespace xiaomi_ble
|
||||
} // namespace esphome
|
||||
|
||||
|
||||
@@ -9,18 +9,58 @@ namespace esphome {
|
||||
namespace xiaomi_ble {
|
||||
|
||||
struct XiaomiParseResult {
|
||||
enum { TYPE_LYWSDCGQ, TYPE_HHCCJCY01, TYPE_LYWSD02, TYPE_CGG1 } type;
|
||||
enum {
|
||||
TYPE_HHCCJCY01,
|
||||
TYPE_GCLS002,
|
||||
TYPE_HHCCPOT002,
|
||||
TYPE_LYWSDCGQ,
|
||||
TYPE_LYWSD02,
|
||||
TYPE_CGG1,
|
||||
TYPE_LYWSD03MMC,
|
||||
TYPE_CGD1,
|
||||
TYPE_JQJCY01YM,
|
||||
TYPE_MUE4094RT,
|
||||
TYPE_WX08ZM,
|
||||
TYPE_MJYD02YLA
|
||||
} type;
|
||||
std::string name;
|
||||
optional<float> temperature;
|
||||
optional<float> humidity;
|
||||
optional<float> battery_level;
|
||||
optional<float> moisture;
|
||||
optional<float> conductivity;
|
||||
optional<float> illuminance;
|
||||
optional<float> moisture;
|
||||
optional<float> formaldehyde;
|
||||
optional<float> battery_level;
|
||||
optional<float> tablet;
|
||||
optional<float> idle_time;
|
||||
optional<bool> is_active;
|
||||
optional<bool> has_motion;
|
||||
optional<bool> is_light;
|
||||
bool has_data; // 0x40
|
||||
bool has_capability; // 0x20
|
||||
bool has_encryption; // 0x08
|
||||
bool is_duplicate;
|
||||
int raw_offset;
|
||||
};
|
||||
|
||||
bool parse_xiaomi_data_byte(uint8_t data_type, const uint8_t *data, uint8_t data_length, XiaomiParseResult &result);
|
||||
struct XiaomiAESVector {
|
||||
uint8_t key[16];
|
||||
uint8_t plaintext[16];
|
||||
uint8_t ciphertext[16];
|
||||
uint8_t authdata[16];
|
||||
uint8_t iv[16];
|
||||
uint8_t tag[16];
|
||||
size_t keysize;
|
||||
size_t authsize;
|
||||
size_t datasize;
|
||||
size_t tagsize;
|
||||
size_t ivsize;
|
||||
};
|
||||
|
||||
optional<XiaomiParseResult> parse_xiaomi(const esp32_ble_tracker::ESPBTDevice &device);
|
||||
bool parse_xiaomi_message(const std::vector<uint8_t> &message, XiaomiParseResult &result);
|
||||
optional<XiaomiParseResult> parse_xiaomi_header(const esp32_ble_tracker::ServiceData &service_data);
|
||||
bool decrypt_xiaomi_payload(std::vector<uint8_t> &raw, const uint8_t *bindkey, const uint64_t &address);
|
||||
bool report_xiaomi_results(const optional<XiaomiParseResult> &result, const std::string &address);
|
||||
|
||||
class XiaomiListener : public esp32_ble_tracker::ESPBTDeviceListener {
|
||||
public:
|
||||
|
||||
Reference in New Issue
Block a user