mirror of
https://github.com/esphome/esphome.git
synced 2025-10-29 22:24:26 +00:00
[usb_host] Prevent USB data corruption from missed events (#10859)
This commit is contained in:
@@ -16,12 +16,12 @@ using namespace bytebuffer;
|
||||
void USBUartTypeCH34X::enable_channels() {
|
||||
// enable the channels
|
||||
for (auto channel : this->channels_) {
|
||||
if (!channel->initialised_)
|
||||
if (!channel->initialised_.load())
|
||||
continue;
|
||||
usb_host::transfer_cb_t callback = [=](const usb_host::TransferStatus &status) {
|
||||
if (!status.success) {
|
||||
ESP_LOGE(TAG, "Control transfer failed, status=%s", esp_err_to_name(status.error_code));
|
||||
channel->initialised_ = false;
|
||||
channel->initialised_.store(false);
|
||||
}
|
||||
};
|
||||
|
||||
@@ -48,7 +48,7 @@ void USBUartTypeCH34X::enable_channels() {
|
||||
auto factor = static_cast<uint8_t>(clk / baud_rate);
|
||||
if (factor == 0 || factor == 0xFF) {
|
||||
ESP_LOGE(TAG, "Invalid baud rate %" PRIu32, baud_rate);
|
||||
channel->initialised_ = false;
|
||||
channel->initialised_.store(false);
|
||||
continue;
|
||||
}
|
||||
if ((clk / factor - baud_rate) > (baud_rate - clk / (factor + 1)))
|
||||
|
||||
@@ -100,12 +100,12 @@ std::vector<CdcEps> USBUartTypeCP210X::parse_descriptors(usb_device_handle_t dev
|
||||
void USBUartTypeCP210X::enable_channels() {
|
||||
// enable the channels
|
||||
for (auto channel : this->channels_) {
|
||||
if (!channel->initialised_)
|
||||
if (!channel->initialised_.load())
|
||||
continue;
|
||||
usb_host::transfer_cb_t callback = [=](const usb_host::TransferStatus &status) {
|
||||
if (!status.success) {
|
||||
ESP_LOGE(TAG, "Control transfer failed, status=%s", esp_err_to_name(status.error_code));
|
||||
channel->initialised_ = false;
|
||||
channel->initialised_.store(false);
|
||||
}
|
||||
};
|
||||
this->control_transfer(USB_VENDOR_IFC | usb_host::USB_DIR_OUT, IFC_ENABLE, 1, channel->index_, callback);
|
||||
|
||||
@@ -130,7 +130,7 @@ size_t RingBuffer::pop(uint8_t *data, size_t len) {
|
||||
return len;
|
||||
}
|
||||
void USBUartChannel::write_array(const uint8_t *data, size_t len) {
|
||||
if (!this->initialised_) {
|
||||
if (!this->initialised_.load()) {
|
||||
ESP_LOGV(TAG, "Channel not initialised - write ignored");
|
||||
return;
|
||||
}
|
||||
@@ -152,7 +152,7 @@ bool USBUartChannel::peek_byte(uint8_t *data) {
|
||||
return true;
|
||||
}
|
||||
bool USBUartChannel::read_array(uint8_t *data, size_t len) {
|
||||
if (!this->initialised_) {
|
||||
if (!this->initialised_.load()) {
|
||||
ESP_LOGV(TAG, "Channel not initialised - read ignored");
|
||||
return false;
|
||||
}
|
||||
@@ -170,7 +170,34 @@ bool USBUartChannel::read_array(uint8_t *data, size_t len) {
|
||||
return status;
|
||||
}
|
||||
void USBUartComponent::setup() { USBClient::setup(); }
|
||||
void USBUartComponent::loop() { USBClient::loop(); }
|
||||
void USBUartComponent::loop() {
|
||||
USBClient::loop();
|
||||
|
||||
// Process USB data from the lock-free queue
|
||||
UsbDataChunk *chunk;
|
||||
while ((chunk = this->usb_data_queue_.pop()) != nullptr) {
|
||||
auto *channel = chunk->channel;
|
||||
|
||||
#ifdef USE_UART_DEBUGGER
|
||||
if (channel->debug_) {
|
||||
uart::UARTDebug::log_hex(uart::UART_DIRECTION_RX, std::vector<uint8_t>(chunk->data, chunk->data + chunk->length),
|
||||
','); // NOLINT()
|
||||
}
|
||||
#endif
|
||||
|
||||
// Push data to ring buffer (now safe in main loop)
|
||||
channel->input_buffer_.push(chunk->data, chunk->length);
|
||||
|
||||
// Return chunk to pool for reuse
|
||||
this->chunk_pool_.release(chunk);
|
||||
}
|
||||
|
||||
// Log dropped USB data periodically
|
||||
uint16_t dropped = this->usb_data_queue_.get_and_reset_dropped_count();
|
||||
if (dropped > 0) {
|
||||
ESP_LOGW(TAG, "Dropped %u USB data chunks due to buffer overflow", dropped);
|
||||
}
|
||||
}
|
||||
void USBUartComponent::dump_config() {
|
||||
USBClient::dump_config();
|
||||
for (auto &channel : this->channels_) {
|
||||
@@ -187,49 +214,70 @@ void USBUartComponent::dump_config() {
|
||||
}
|
||||
}
|
||||
void USBUartComponent::start_input(USBUartChannel *channel) {
|
||||
if (!channel->initialised_ || channel->input_started_ ||
|
||||
channel->input_buffer_.get_free_space() < channel->cdc_dev_.in_ep->wMaxPacketSize)
|
||||
if (!channel->initialised_.load() || channel->input_started_.load())
|
||||
return;
|
||||
// Note: This function is called from both USB task and main loop, so we cannot
|
||||
// directly check ring buffer space here. Backpressure is handled by the chunk pool:
|
||||
// when exhausted, USB input stops until chunks are freed by the main loop
|
||||
const auto *ep = channel->cdc_dev_.in_ep;
|
||||
// CALLBACK CONTEXT: This lambda is executed in USB task via transfer_callback
|
||||
auto callback = [this, channel](const usb_host::TransferStatus &status) {
|
||||
ESP_LOGV(TAG, "Transfer result: length: %u; status %X", status.data_len, status.error_code);
|
||||
if (!status.success) {
|
||||
ESP_LOGE(TAG, "Control transfer failed, status=%s", esp_err_to_name(status.error_code));
|
||||
// On failure, don't restart - let next read_array() trigger it
|
||||
channel->input_started_.store(false);
|
||||
return;
|
||||
}
|
||||
#ifdef USE_UART_DEBUGGER
|
||||
if (channel->debug_) {
|
||||
uart::UARTDebug::log_hex(uart::UART_DIRECTION_RX,
|
||||
std::vector<uint8_t>(status.data, status.data + status.data_len), ','); // NOLINT()
|
||||
}
|
||||
#endif
|
||||
channel->input_started_ = false;
|
||||
if (!channel->dummy_receiver_) {
|
||||
for (size_t i = 0; i != status.data_len; i++) {
|
||||
channel->input_buffer_.push(status.data[i]);
|
||||
|
||||
if (!channel->dummy_receiver_ && status.data_len > 0) {
|
||||
// Allocate a chunk from the pool
|
||||
UsbDataChunk *chunk = this->chunk_pool_.allocate();
|
||||
if (chunk == nullptr) {
|
||||
// No chunks available - queue is full or we're out of memory
|
||||
this->usb_data_queue_.increment_dropped_count();
|
||||
// Mark input as not started so we can retry
|
||||
channel->input_started_.store(false);
|
||||
return;
|
||||
}
|
||||
|
||||
// Copy data to chunk (this is fast, happens in USB task)
|
||||
memcpy(chunk->data, status.data, status.data_len);
|
||||
chunk->length = status.data_len;
|
||||
chunk->channel = channel;
|
||||
|
||||
// Push to lock-free queue for main loop processing
|
||||
// Push always succeeds because pool size == queue size
|
||||
this->usb_data_queue_.push(chunk);
|
||||
}
|
||||
if (channel->input_buffer_.get_free_space() >= channel->cdc_dev_.in_ep->wMaxPacketSize) {
|
||||
this->defer([this, channel] { this->start_input(channel); });
|
||||
}
|
||||
|
||||
// On success, restart input immediately from USB task for performance
|
||||
// The lock-free queue will handle backpressure
|
||||
channel->input_started_.store(false);
|
||||
this->start_input(channel);
|
||||
};
|
||||
channel->input_started_ = true;
|
||||
channel->input_started_.store(true);
|
||||
this->transfer_in(ep->bEndpointAddress, callback, ep->wMaxPacketSize);
|
||||
}
|
||||
|
||||
void USBUartComponent::start_output(USBUartChannel *channel) {
|
||||
if (channel->output_started_)
|
||||
// IMPORTANT: This function must only be called from the main loop!
|
||||
// The output_buffer_ is not thread-safe and can only be accessed from main loop.
|
||||
// USB callbacks use defer() to ensure this function runs in the correct context.
|
||||
if (channel->output_started_.load())
|
||||
return;
|
||||
if (channel->output_buffer_.is_empty()) {
|
||||
return;
|
||||
}
|
||||
const auto *ep = channel->cdc_dev_.out_ep;
|
||||
// CALLBACK CONTEXT: This lambda is executed in USB task via transfer_callback
|
||||
auto callback = [this, channel](const usb_host::TransferStatus &status) {
|
||||
ESP_LOGV(TAG, "Output Transfer result: length: %u; status %X", status.data_len, status.error_code);
|
||||
channel->output_started_ = false;
|
||||
channel->output_started_.store(false);
|
||||
// Defer restart to main loop (defer is thread-safe)
|
||||
this->defer([this, channel] { this->start_output(channel); });
|
||||
};
|
||||
channel->output_started_ = true;
|
||||
channel->output_started_.store(true);
|
||||
uint8_t data[ep->wMaxPacketSize];
|
||||
auto len = channel->output_buffer_.pop(data, ep->wMaxPacketSize);
|
||||
this->transfer_out(ep->bEndpointAddress, callback, data, len);
|
||||
@@ -272,7 +320,7 @@ void USBUartTypeCdcAcm::on_connected() {
|
||||
channel->cdc_dev_ = cdc_devs[i++];
|
||||
fix_mps(channel->cdc_dev_.in_ep);
|
||||
fix_mps(channel->cdc_dev_.out_ep);
|
||||
channel->initialised_ = true;
|
||||
channel->initialised_.store(true);
|
||||
auto err =
|
||||
usb_host_interface_claim(this->handle_, this->device_handle_, channel->cdc_dev_.bulk_interface_number, 0);
|
||||
if (err != ESP_OK) {
|
||||
@@ -301,9 +349,9 @@ void USBUartTypeCdcAcm::on_disconnected() {
|
||||
usb_host_endpoint_flush(this->device_handle_, channel->cdc_dev_.notify_ep->bEndpointAddress);
|
||||
}
|
||||
usb_host_interface_release(this->handle_, this->device_handle_, channel->cdc_dev_.bulk_interface_number);
|
||||
channel->initialised_ = false;
|
||||
channel->input_started_ = false;
|
||||
channel->output_started_ = false;
|
||||
channel->initialised_.store(false);
|
||||
channel->input_started_.store(false);
|
||||
channel->output_started_.store(false);
|
||||
channel->input_buffer_.clear();
|
||||
channel->output_buffer_.clear();
|
||||
}
|
||||
@@ -312,10 +360,10 @@ void USBUartTypeCdcAcm::on_disconnected() {
|
||||
|
||||
void USBUartTypeCdcAcm::enable_channels() {
|
||||
for (auto *channel : this->channels_) {
|
||||
if (!channel->initialised_)
|
||||
if (!channel->initialised_.load())
|
||||
continue;
|
||||
channel->input_started_ = false;
|
||||
channel->output_started_ = false;
|
||||
channel->input_started_.store(false);
|
||||
channel->output_started_.store(false);
|
||||
this->start_input(channel);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -5,11 +5,15 @@
|
||||
#include "esphome/core/helpers.h"
|
||||
#include "esphome/components/uart/uart_component.h"
|
||||
#include "esphome/components/usb_host/usb_host.h"
|
||||
#include "esphome/core/lock_free_queue.h"
|
||||
#include "esphome/core/event_pool.h"
|
||||
#include <atomic>
|
||||
|
||||
namespace esphome {
|
||||
namespace usb_uart {
|
||||
class USBUartTypeCdcAcm;
|
||||
class USBUartComponent;
|
||||
class USBUartChannel;
|
||||
|
||||
static const char *const TAG = "usb_uart";
|
||||
|
||||
@@ -68,6 +72,17 @@ class RingBuffer {
|
||||
uint8_t *buffer_;
|
||||
};
|
||||
|
||||
// Structure for queuing received USB data chunks
|
||||
struct UsbDataChunk {
|
||||
static constexpr size_t MAX_CHUNK_SIZE = 64; // USB packet size
|
||||
uint8_t data[MAX_CHUNK_SIZE];
|
||||
uint8_t length; // Max 64 bytes, so uint8_t is sufficient
|
||||
USBUartChannel *channel;
|
||||
|
||||
// Required for EventPool - no cleanup needed for POD types
|
||||
void release() {}
|
||||
};
|
||||
|
||||
class USBUartChannel : public uart::UARTComponent, public Parented<USBUartComponent> {
|
||||
friend class USBUartComponent;
|
||||
friend class USBUartTypeCdcAcm;
|
||||
@@ -90,16 +105,20 @@ class USBUartChannel : public uart::UARTComponent, public Parented<USBUartCompon
|
||||
void set_dummy_receiver(bool dummy_receiver) { this->dummy_receiver_ = dummy_receiver; }
|
||||
|
||||
protected:
|
||||
const uint8_t index_;
|
||||
// Larger structures first for better alignment
|
||||
RingBuffer input_buffer_;
|
||||
RingBuffer output_buffer_;
|
||||
UARTParityOptions parity_{UART_CONFIG_PARITY_NONE};
|
||||
bool input_started_{true};
|
||||
bool output_started_{true};
|
||||
CdcEps cdc_dev_{};
|
||||
// Enum (likely 4 bytes)
|
||||
UARTParityOptions parity_{UART_CONFIG_PARITY_NONE};
|
||||
// Group atomics together (each 1 byte)
|
||||
std::atomic<bool> input_started_{true};
|
||||
std::atomic<bool> output_started_{true};
|
||||
std::atomic<bool> initialised_{false};
|
||||
// Group regular bytes together to minimize padding
|
||||
const uint8_t index_;
|
||||
bool debug_{};
|
||||
bool dummy_receiver_{};
|
||||
bool initialised_{};
|
||||
};
|
||||
|
||||
class USBUartComponent : public usb_host::USBClient {
|
||||
@@ -115,6 +134,11 @@ class USBUartComponent : public usb_host::USBClient {
|
||||
void start_input(USBUartChannel *channel);
|
||||
void start_output(USBUartChannel *channel);
|
||||
|
||||
// Lock-free data transfer from USB task to main loop
|
||||
static constexpr int USB_DATA_QUEUE_SIZE = 32;
|
||||
LockFreeQueue<UsbDataChunk, USB_DATA_QUEUE_SIZE> usb_data_queue_;
|
||||
EventPool<UsbDataChunk, USB_DATA_QUEUE_SIZE> chunk_pool_;
|
||||
|
||||
protected:
|
||||
std::vector<USBUartChannel *> channels_{};
|
||||
};
|
||||
|
||||
Reference in New Issue
Block a user