mirror of
https://github.com/ARM-software/devlib.git
synced 2025-04-04 00:40:04 +01:00
Add DerivedGfxInfoStats that parse output from GfxInfoFramesInstrument to produce FPS data and rendering statistics.
138 lines
5.1 KiB
Python
138 lines
5.1 KiB
Python
from __future__ import division
|
|
import csv
|
|
import os
|
|
import re
|
|
|
|
try:
|
|
import pandas as pd
|
|
except ImportError:
|
|
pd = None
|
|
|
|
from devlib import DerivedMeasurements, DerivedMetric, MeasurementsCsv, InstrumentChannel
|
|
from devlib.utils.rendering import gfxinfo_get_last_dump, VSYNC_INTERVAL
|
|
from devlib.utils.types import numeric
|
|
|
|
|
|
class DerivedFpsStats(DerivedMeasurements):
|
|
|
|
def __init__(self, drop_threshold=5, suffix=None, filename=None, outdir=None):
|
|
self.drop_threshold = drop_threshold
|
|
self.suffix = suffix
|
|
self.filename = filename
|
|
self.outdir = outdir
|
|
if (filename is None) and (suffix is None):
|
|
self.suffix = '-fps'
|
|
elif (filename is not None) and (suffix is not None):
|
|
raise ValueError('suffix and filename cannot be specified at the same time.')
|
|
if filename is not None and os.sep in filename:
|
|
raise ValueError('filename cannot be a path (cannot countain "{}"'.format(os.sep))
|
|
|
|
def process(self, measurements_csv):
|
|
if isinstance(measurements_csv, basestring):
|
|
measurements_csv = MeasurementsCsv(measurements_csv)
|
|
if pd is not None:
|
|
return self._process_with_pandas(measurements_csv)
|
|
return self._process_without_pandas(measurements_csv)
|
|
|
|
def _get_csv_file_name(self, frames_file):
|
|
outdir = self.outdir or os.path.dirname(frames_file)
|
|
if self.filename:
|
|
return os.path.join(outdir, self.filename)
|
|
|
|
frames_basename = os.path.basename(frames_file)
|
|
rest, ext = os.path.splitext(frames_basename)
|
|
csv_basename = rest + self.suffix + ext
|
|
return os.path.join(outdir, csv_basename)
|
|
|
|
|
|
class DerivedGfxInfoStats(DerivedFpsStats):
|
|
|
|
@staticmethod
|
|
def process_raw(filepath, *args):
|
|
metrics = []
|
|
dump = gfxinfo_get_last_dump(filepath)
|
|
seen_stats = False
|
|
for line in dump.split('\n'):
|
|
if seen_stats and not line.strip():
|
|
break
|
|
elif line.startswith('Janky frames:'):
|
|
text = line.split(': ')[-1]
|
|
val_text, pc_text = text.split('(')
|
|
metrics.append(DerivedMetric('janks', numeric(val_text.strip()), 'count'))
|
|
metrics.append(DerivedMetric('janks_pc', numeric(pc_text[:-3]), 'percent'))
|
|
elif ' percentile: ' in line:
|
|
ptile, val_text = line.split(' percentile: ')
|
|
name = 'render_time_{}_ptile'.format(ptile)
|
|
value = numeric(val_text.strip()[:-2])
|
|
metrics.append(DerivedMetric(name, value, 'time_ms'))
|
|
elif line.startswith('Number '):
|
|
name_text, val_text = line.strip().split(': ')
|
|
name = name_text[7:].lower().replace(' ', '_')
|
|
value = numeric(val_text)
|
|
metrics.append(DerivedMetric(name, value, 'count'))
|
|
else:
|
|
continue
|
|
seen_stats = True
|
|
return metrics
|
|
|
|
def _process_without_pandas(self, measurements_csv):
|
|
per_frame_fps = []
|
|
start_vsync, end_vsync = None, None
|
|
frame_count = 0
|
|
|
|
for frame_data in measurements_csv.iter_values():
|
|
if frame_data.Flags_flags != 0:
|
|
continue
|
|
frame_count += 1
|
|
|
|
if start_vsync is None:
|
|
start_vsync = frame_data.Vsync_time_us
|
|
end_vsync = frame_data.Vsync_time_us
|
|
|
|
frame_time = frame_data.FrameCompleted_time_us - frame_data.IntendedVsync_time_us
|
|
pff = 1e9 / frame_time
|
|
if pff > self.drop_threshold:
|
|
per_frame_fps.append([pff])
|
|
|
|
if frame_count:
|
|
duration = end_vsync - start_vsync
|
|
fps = (1e9 * frame_count) / float(duration)
|
|
else:
|
|
duration = 0
|
|
fps = 0
|
|
|
|
csv_file = self._get_csv_file_name(measurements_csv.path)
|
|
with open(csv_file, 'wb') as wfh:
|
|
writer = csv.writer(wfh)
|
|
writer.writerow(['fps'])
|
|
writer.writerows(per_frame_fps)
|
|
|
|
return [DerivedMetric('fps', fps, 'fps'),
|
|
DerivedMetric('total_frames', frame_count, 'frames'),
|
|
MeasurementsCsv(csv_file)]
|
|
|
|
def _process_with_pandas(self, measurements_csv):
|
|
data = pd.read_csv(measurements_csv.path)
|
|
data = data[data.Flags_flags == 0]
|
|
frame_time = data.FrameCompleted_time_us - data.IntendedVsync_time_us
|
|
per_frame_fps = (1e9 / frame_time)
|
|
keep_filter = per_frame_fps > self.drop_threshold
|
|
per_frame_fps = per_frame_fps[keep_filter]
|
|
per_frame_fps.name = 'fps'
|
|
|
|
frame_count = data.index.size
|
|
if frame_count > 1:
|
|
duration = data.Vsync_time_us.iloc[-1] - data.Vsync_time_us.iloc[0]
|
|
fps = (1e9 * frame_count) / float(duration)
|
|
else:
|
|
duration = 0
|
|
fps = 0
|
|
|
|
csv_file = self._get_csv_file_name(measurements_csv.path)
|
|
per_frame_fps.to_csv(csv_file, index=False, header=True)
|
|
|
|
return [DerivedMetric('fps', fps, 'fps'),
|
|
DerivedMetric('total_frames', frame_count, 'frames'),
|
|
MeasurementsCsv(csv_file)]
|
|
|