-- some code in Idris module XX.X''' import Data.Nat data X = A | B namespace X  ||| Documentation  record Y where  [noHints]  constructor MkY'  field1 : Nat  {auto x : Nat} namespace X' {  parameters (x : A (Maybe b))  x : Nat } u : () u = () k, w, u : Char k = '\NUL' w = 'w' x = [1, 0, 3, "sdf\{d}", 0xFF, 0o77, 0b10_1, 100_100] f : Int -> Int f = if x > 0 then x else 0 () SS `elem` S $ do  x <- a [1, 2, 3]  let ukuk = akak  rewrite $ Wow Wow Wow Wow.Wow b W (W)  pure $ f A B c D (EE) E (&&&) : Nat -> Nat -> Nat z &&& y = d + ?foo (&&&) x y = ?asfda public export covering (.fun) : X a Y b => Nat -> Nat Z .fun = haha.fun haha .N (.fun) Z = ahah $ \case  x@(x, y) => Prelude.Types.ahahah (.N) : Nat -> Nat Z .N = Z (.N) (S n) = (.N) n xx : Name xx = `{Full.Name} infixr 0 ^^^, &&& xxx : ? xxx = case x of  Z => lalalaCamelCase  z => alalalCamelCase ff : Nat -> TTImp ff 0 = let x = 0 in val ff _ = `(let x = 0 in ~val ^~^ ~(abc)) ff _ = f `(let x = 0 in ~val ^~^ ~(abc)) x %language ElabReflection %runElab X.sf ads %macro %inline fff : List Decl fff = `[  f : Nat -> Nat  f Z = haha %runElab %search @{%World} ] private infixr 4 ^--^ (^--^) : Nat -> Nat -> Nat (^--^) Z Z = Z x ^--^ y = x + y x : (y : Vect n (Maybe (Maybe (&&&) Nat))) ->  {x : Nat} -> {auto _ : Monoid a} ->  {default 4 xx : Nat} ->  {default (f x Y) xx' : Nat} ->  String x Z S = ?foo x y _ = "a b \{show $ let x = 0 in y} y >>= z" multiline : String multiline = """  A multiline string\NUL  """ f' : Nat -> Nat f' = x' 4 x : Char x = '\BEL' x = '\\' x = '\'' x = '\o755' x = 'a' xx : Int xx = 0o7_5_5