mirror of
https://github.com/sharkdp/bat.git
synced 2025-09-02 03:12:25 +01:00
Update Lean.sublime-syntax from Lean 3 to Lean 4
Resolves #3286 1. `lean4.json` → `lean4.tmLanguage` 1. Download `vscode-lean4/syntaxes/lean4.json` from https://github.com/leanprover/vscode-lean4/pull/623 (now merged). 2. Install the VS Code extension [TextMate Languages (pedro-w)](https://marketplace.visualstudio.com/items?itemName=pedro-w.tmlanguage). 3. Open `lean4.json` in VS Code, <kbd>F1</kbd>, and “Convert to tmLanguage PLIST File”. 2. `lean4.tmLanguage` → `lean4.sublime-syntax` Open `lean4.tmLanguage` in Sublime text, “Tools → Developer → New Syntax from lean4.tmLanguage…”.
This commit is contained in:
2
.gitmodules
vendored
2
.gitmodules
vendored
@@ -196,7 +196,7 @@
|
||||
branch = bat-source
|
||||
[submodule "assets/syntaxes/02_Extra/Lean"]
|
||||
path = assets/syntaxes/02_Extra/Lean
|
||||
url = https://github.com/leanprover/vscode-lean.git
|
||||
url = https://github.com/leanprover/vscode-lean4.git
|
||||
[submodule "assets/syntaxes/02_Extra/Zig"]
|
||||
path = assets/syntaxes/02_Extra/Zig
|
||||
url = https://github.com/ziglang/sublime-zig-language.git
|
||||
|
2
assets/syntaxes/02_Extra/Lean
vendored
2
assets/syntaxes/02_Extra/Lean
vendored
Submodule assets/syntaxes/02_Extra/Lean updated: 29a03a8aba...b8fc2226dc
145
assets/syntaxes/02_Extra/Lean.sublime-syntax
vendored
145
assets/syntaxes/02_Extra/Lean.sublime-syntax
vendored
@@ -1,125 +1,130 @@
|
||||
%YAML 1.2
|
||||
---
|
||||
# http://www.sublimetext.com/docs/3/syntax.html
|
||||
name: Lean
|
||||
# http://www.sublimetext.com/docs/syntax.html
|
||||
name: Lean 4
|
||||
file_extensions:
|
||||
- lean
|
||||
scope: source.lean
|
||||
scope: source.lean4
|
||||
contexts:
|
||||
main:
|
||||
- include: comments
|
||||
- match: '\b(?<!\.)(inductive|coinductive|structure|theorem|axiom|axioms|abbreviation|lemma|definition|def|instance|class|constant)\b\s+(\{[^}]*\})?'
|
||||
- match: \b(Prop|Type|Sort)\b
|
||||
scope: storage.type.lean4
|
||||
- match: '\battribute\b\s*\[[^\]]*\]'
|
||||
scope: storage.modifier.lean4
|
||||
- match: '@\[[^\]]*\]'
|
||||
scope: storage.modifier.lean4
|
||||
- match: \b(?<!\.)(global|local|scoped|partial|unsafe|private|protected|noncomputable)(?!\.)\b
|
||||
scope: storage.modifier.lean4
|
||||
- match: \b(sorry|admit|stop)\b
|
||||
scope: invalid.illegal.lean4
|
||||
- match: '#(print|eval|reduce|check|check_failure)\b'
|
||||
scope: keyword.other.lean4
|
||||
- match: \bderiving\s+instance\b
|
||||
scope: keyword.other.command.lean4
|
||||
- match: '\b(?<!\.)(inductive|coinductive|structure|theorem|axiom|abbrev|lemma|def|instance|class|constant)\b\s+(\{[^}]*\})?'
|
||||
captures:
|
||||
1: keyword.other.definitioncommand.lean
|
||||
1: keyword.other.definitioncommand.lean4
|
||||
push:
|
||||
- meta_scope: meta.definitioncommand.lean
|
||||
- match: '(?=\bwith\b|\bextends\b|[:\|\(\[\{⦃<>])'
|
||||
- meta_scope: meta.definitioncommand.lean4
|
||||
- match: '(?=\bwith\b|\bextends\b|\bwhere\b|[:\|\(\[\{⦃<>])'
|
||||
pop: true
|
||||
- include: comments
|
||||
- include: definitionName
|
||||
- match: ","
|
||||
- match: \b(Prop|Type|Sort)\b
|
||||
scope: storage.type.lean
|
||||
- match: '\battribute\b\s*\[[^\]]*\]'
|
||||
scope: storage.modifier.lean
|
||||
- match: '@\[[^\]]*\]'
|
||||
scope: storage.modifier.lean
|
||||
- match: \b(?<!\.)(private|meta|mutual|protected|noncomputable)\b
|
||||
scope: keyword.control.definition.modifier.lean
|
||||
- match: \b(sorry)\b
|
||||
scope: invalid.illegal.lean
|
||||
- match: '#print\s+(def|definition|inductive|instance|structure|axiom|axioms|class)\b'
|
||||
scope: keyword.other.command.lean
|
||||
- match: '#(print|eval|reduce|check|help|exit|find|where)\b'
|
||||
scope: keyword.other.command.lean
|
||||
- match: \b(?<!\.)(import|export|prelude|theory|definition|def|abbreviation|instance|renaming|hiding|exposing|parameter|parameters|begin|constant|constants|lemma|variable|variables|theorem|example|open|axiom|inductive|coinductive|with|structure|universe|universes|alias|precedence|reserve|postfix|prefix|infix|infixl|infixr|notation|end|using|namespace|section|local|set_option|extends|include|omit|class|classes|instances|raw|run_cmd|restate_axiom)(?!\.)\b
|
||||
scope: keyword.other.lean
|
||||
- match: \b(?<!\.)(calc|have|this|match|do|suffices|show|by|in|at|let|forall|fun|exists|assume|from|obtain|haveI|λ)(?!\.)\b
|
||||
scope: keyword.other.lean
|
||||
- match: ','
|
||||
- match: \b(?<!\.)(theorem|show|have|from|suffices|nomatch|def|class|structure|instance|set_option|initialize|builtin_initialize|example|inductive|coinductive|axiom|constant|universe|universes|variable|variables|import|open|export|theory|prelude|renaming|hiding|exposing|do|by|let|extends|mutual|mut|where|rec|syntax|macro_rules|macro|deriving|fun|section|namespace|end|infix|infixl|infixr|postfix|prefix|notation|abbrev|if|then|else|calc|match|with|for|in|unless|try|catch|finally|return|continue|break)(?!\.)\b
|
||||
scope: keyword.other.lean4
|
||||
- match: «
|
||||
push:
|
||||
- meta_content_scope: entity.name.lean
|
||||
- meta_content_scope: entity.name.lean4
|
||||
- match: »
|
||||
pop: true
|
||||
- match: \b(?<!\.)(if|then|else)\b
|
||||
scope: keyword.control.lean
|
||||
- match: '"'
|
||||
- match: (s!)"
|
||||
captures:
|
||||
0: punctuation.definition.string.begin.lean
|
||||
1: keyword.other.lean4
|
||||
push:
|
||||
- meta_scope: string.quoted.double.lean
|
||||
- meta_scope: string.interpolated.lean4
|
||||
- match: '"'
|
||||
captures:
|
||||
0: punctuation.definition.string.end.lean
|
||||
pop: true
|
||||
- match: '\\[\\"nt'']'
|
||||
scope: constant.character.escape.lean
|
||||
- match: '(\{)'
|
||||
captures:
|
||||
1: keyword.other.lean4
|
||||
push:
|
||||
- match: '(\})'
|
||||
captures:
|
||||
1: keyword.other.lean4
|
||||
pop: true
|
||||
- include: main
|
||||
- match: '\\[\\"ntr'']'
|
||||
scope: constant.character.escape.lean4
|
||||
- match: '\\x[0-9A-Fa-f][0-9A-Fa-f]'
|
||||
scope: constant.character.escape.lean
|
||||
scope: constant.character.escape.lean4
|
||||
- match: '\\u[0-9A-Fa-f][0-9A-Fa-f][0-9A-Fa-f][0-9A-Fa-f]'
|
||||
scope: constant.character.escape.lean
|
||||
scope: constant.character.escape.lean4
|
||||
- match: '"'
|
||||
push:
|
||||
- meta_scope: string.quoted.double.lean4
|
||||
- match: '"'
|
||||
pop: true
|
||||
- match: '\\[\\"ntr'']'
|
||||
scope: constant.character.escape.lean4
|
||||
- match: '\\x[0-9A-Fa-f][0-9A-Fa-f]'
|
||||
scope: constant.character.escape.lean4
|
||||
- match: '\\u[0-9A-Fa-f][0-9A-Fa-f][0-9A-Fa-f][0-9A-Fa-f]'
|
||||
scope: constant.character.escape.lean4
|
||||
- match: \b(true|false)\b
|
||||
scope: constant.language.lean4
|
||||
- match: '''[^\\'']'''
|
||||
scope: string.quoted.single.lean
|
||||
- match: '''(\\(x..|u....|.))'''
|
||||
scope: string.quoted.single.lean
|
||||
scope: string.quoted.single.lean4
|
||||
- match: '''(\\(x[0-9A-Fa-f][0-9A-Fa-f]|u[0-9A-Fa-f][0-9A-Fa-f][0-9A-Fa-f][0-9A-Fa-f]|.))'''
|
||||
scope: string.quoted.single.lean4
|
||||
captures:
|
||||
1: constant.character.escape.lean
|
||||
1: constant.character.escape.lean4
|
||||
- match: '`+[^\[(]\S+'
|
||||
scope: entity.name.lean
|
||||
- match: '\b([0-9]+|0([xX][0-9a-fA-F]+))\b'
|
||||
scope: constant.numeric.lean
|
||||
scope: entity.name.lean4
|
||||
- match: '\b([0-9]+|0([xX][0-9a-fA-F]+)|[-]?(0|[1-9][0-9]*)(\.[0-9]+)?([eE][+-]?[0-9]+)?)\b'
|
||||
scope: constant.numeric.lean4
|
||||
blockComment:
|
||||
- match: /-
|
||||
push:
|
||||
- meta_scope: comment.block.lean
|
||||
- match: "-/"
|
||||
- meta_scope: comment.block.lean4
|
||||
- match: '-/'
|
||||
pop: true
|
||||
- include: scope:source.lean.markdown
|
||||
- include: scope:source.lean4.markdown
|
||||
- include: blockComment
|
||||
comments:
|
||||
- include: dashComment
|
||||
- include: docComment
|
||||
- include: stringBlock
|
||||
- include: modDocComment
|
||||
- include: blockComment
|
||||
dashComment:
|
||||
- match: (--)
|
||||
captures:
|
||||
0: punctuation.definition.comment.lean
|
||||
- match: '--'
|
||||
push:
|
||||
- meta_scope: comment.line.double-dash.lean
|
||||
- meta_scope: comment.line.double-dash.lean4
|
||||
- match: $
|
||||
pop: true
|
||||
- include: scope:source.lean.markdown
|
||||
- include: scope:source.lean4.markdown
|
||||
definitionName:
|
||||
- match: '\b[^:«»\(\)\{\}[:space:]=→λ∀?][^:«»\(\)\{\}[:space:]]*'
|
||||
scope: entity.name.function.lean
|
||||
scope: entity.name.function.lean4
|
||||
- match: «
|
||||
push:
|
||||
- meta_content_scope: entity.name.function.lean
|
||||
- meta_content_scope: entity.name.function.lean4
|
||||
- match: »
|
||||
pop: true
|
||||
docComment:
|
||||
- match: /--
|
||||
push:
|
||||
- meta_scope: comment.block.documentation.lean
|
||||
- match: "-/"
|
||||
- meta_scope: comment.block.documentation.lean4
|
||||
- match: '-/'
|
||||
pop: true
|
||||
- include: scope:source.lean.markdown
|
||||
- include: scope:source.lean4.markdown
|
||||
- include: blockComment
|
||||
modDocComment:
|
||||
- match: /-!
|
||||
push:
|
||||
- meta_scope: comment.block.documentation.lean
|
||||
- match: "-/"
|
||||
- meta_scope: comment.block.documentation.lean4
|
||||
- match: '-/'
|
||||
pop: true
|
||||
- include: scope:source.lean.markdown
|
||||
- include: blockComment
|
||||
stringBlock:
|
||||
- match: /-"
|
||||
push:
|
||||
- meta_scope: comment.block.string.lean
|
||||
- match: '"-/'
|
||||
pop: true
|
||||
- include: scope:source.lean.markdown
|
||||
- include: scope:source.lean4.markdown
|
||||
- include: blockComment
|
||||
|
@@ -102,4 +102,4 @@ The following files have been manually modified after converting from a `.tmLang
|
||||
https://github.com/seanjames777/SML-Language-Definition/blob/master/sml.tmLanguage
|
||||
* `Cabal.sublime_syntax` has been added manually from
|
||||
https://github.com/SublimeHaskell/SublimeHaskell/ - we don't want to include the whole submodule because it includes other syntaxes ("Haskell improved") as well.
|
||||
* `Lean.sublime-syntax` has been added manually from https://github.com/leanprover/vscode-lean/blob/master/syntaxes/lean.json via conversion.
|
||||
* `Lean.sublime-syntax` has been added manually from https://github.com/leanprover/vscode-lean4/blob/master/vscode-lean4/syntaxes/lean4.json via conversion.
|
||||
|
111
tests/syntax-tests/highlighted/Lean/test.lean
vendored
111
tests/syntax-tests/highlighted/Lean/test.lean
vendored
@@ -1,67 +1,82 @@
|
||||
[38;2;249;38;114mimport[0m[38;2;248;248;242m data.matrix.notation[0m
|
||||
[38;2;249;38;114mimport[0m[38;2;248;248;242m data.vector2[0m
|
||||
[38;2;249;38;114mimport[0m[38;2;248;248;242m MIL.Common[0m
|
||||
[38;2;249;38;114mimport[0m[38;2;248;248;242m Mathlib.Topology.Instances.Real.Defs[0m
|
||||
|
||||
[38;2;117;113;94m/-![0m
|
||||
[38;2;249;38;114mopen[0m[38;2;248;248;242m Set Filter Topology[0m
|
||||
|
||||
[38;2;117;113;94mHelpers that don't currently fit elsewhere...[0m
|
||||
[38;2;249;38;114mvariable[0m[38;2;248;248;242m {α : [0m[3;38;2;102;217;239mType[0m[38;2;248;248;242m*}[0m
|
||||
[38;2;249;38;114mvariable[0m[38;2;248;248;242m (s t : Set ℕ)[0m
|
||||
[38;2;249;38;114mvariable[0m[38;2;248;248;242m (ssubt : s ⊆ t)[0m
|
||||
[38;2;249;38;114mvariable[0m[38;2;248;248;242m {α : [0m[3;38;2;102;217;239mType[0m[38;2;248;248;242m*} (s : Set (Set α))[0m
|
||||
[38;2;117;113;94m-- Apostrophes are allowed in variable names[0m
|
||||
[38;2;249;38;114mvariable[0m[38;2;248;248;242m (f'_x x' : ℕ)[0m
|
||||
[38;2;249;38;114mvariable[0m[38;2;248;248;242m (bangwI' jablu'DI' QaQqu' nay' Ghay'cha' he' : ℕ)[0m
|
||||
|
||||
[38;2;117;113;94m-/[0m
|
||||
[38;2;117;113;94m-- In the next example we could use `tauto` in each proof instead of knowing the lemmas[0m
|
||||
[38;2;249;38;114mexample[0m[38;2;248;248;242m {α : [0m[3;38;2;102;217;239mType[0m[38;2;248;248;242m*} (s : Set α) : Filter α :=[0m
|
||||
[38;2;248;248;242m { sets := { t | s ⊆ t }[0m
|
||||
[38;2;248;248;242m univ_sets := subset_univ s[0m
|
||||
[38;2;248;248;242m sets_of_superset := [0m[38;2;249;38;114mfun[0m[38;2;248;248;242m hU hUV ↦ Subset.trans hU hUV[0m
|
||||
[38;2;248;248;242m inter_sets := [0m[38;2;249;38;114mfun[0m[38;2;248;248;242m hU hV ↦ subset_inter hU hV }[0m
|
||||
|
||||
[38;2;249;38;114mlemma[0m[38;2;248;248;242m [0m[38;2;166;226;46msplit_eq[0m[38;2;248;248;242m [0m[38;2;248;248;242m{m n : [0m[3;38;2;102;217;239mType[0m[38;2;248;248;242m*} (x : m × n) (p p' : m × n) :[0m
|
||||
[38;2;248;248;242m p = x ∨ p' = x ∨ (x ≠ p ∧ x ≠ p') := [0m[38;2;249;38;114mby[0m[38;2;248;248;242m tauto[0m
|
||||
|
||||
[38;2;117;113;94m--[0m[38;2;117;113;94m For `playfield`s, the piece type and/or piece index type.[0m
|
||||
[38;2;249;38;114mvariables[0m[38;2;248;248;242m (X : [0m[3;38;2;102;217;239mType[0m[38;2;248;248;242m*)[0m
|
||||
[38;2;249;38;114mvariables[0m[38;2;248;248;242m [has_repr X][0m
|
||||
|
||||
[38;2;249;38;114mnamespace[0m[38;2;248;248;242m chess.utils[0m
|
||||
|
||||
[38;2;249;38;114msection[0m[38;2;248;248;242m repr[0m
|
||||
|
||||
[38;2;117;113;94m/--[0m
|
||||
[38;2;117;113;94mAn auxiliary wrapper for `option X` that allows for overriding the `has_repr` instance[0m
|
||||
[38;2;117;113;94mfor `option`, and rather, output just the value in the `some` and a custom provided[0m
|
||||
[38;2;117;113;94m`string` for `none`.[0m
|
||||
[38;2;117;113;94m-/[0m
|
||||
[38;2;249;38;114mstructure[0m[38;2;248;248;242m [0m[38;2;166;226;46moption_wrapper[0m[38;2;248;248;242m [0m[38;2;248;248;242m:=[0m
|
||||
[38;2;248;248;242m(val : option X)[0m
|
||||
[38;2;248;248;242m(none_s : string)[0m
|
||||
[38;2;249;38;114m@[class][0m[38;2;248;248;242m [0m[38;2;249;38;114mstructure[0m[38;2;248;248;242m [0m[38;2;166;226;46mOne₂[0m[38;2;248;248;242m [0m[38;2;248;248;242m(α : [0m[3;38;2;102;217;239mType[0m[38;2;248;248;242m) [0m[38;2;249;38;114mwhere[0m
|
||||
[38;2;248;248;242m [0m[38;2;117;113;94m/-- The element one -/[0m
|
||||
[38;2;248;248;242m one : α[0m
|
||||
|
||||
[38;2;249;38;114minstance[0m[38;2;248;248;242m [0m[38;2;166;226;46mwrapped_option_repr[0m[38;2;248;248;242m [0m[38;2;248;248;242m: has_repr (option_wrapper X) :=[0m
|
||||
[38;2;248;248;242m⟨[0m[38;2;249;38;114mλ[0m[38;2;248;248;242m ⟨val, s⟩, (option.map has_repr.repr val).get_or_else s⟩[0m
|
||||
[38;2;249;38;114mstructure[0m[38;2;248;248;242m [0m[38;2;166;226;46mStandardTwoSimplex[0m[38;2;248;248;242m [0m[38;2;249;38;114mwhere[0m
|
||||
[38;2;248;248;242m x : ℝ[0m
|
||||
[38;2;248;248;242m y : ℝ[0m
|
||||
[38;2;248;248;242m z : ℝ[0m
|
||||
[38;2;248;248;242m x_nonneg : [0m[38;2;190;132;255m0[0m[38;2;248;248;242m ≤ x[0m
|
||||
[38;2;248;248;242m y_nonneg : [0m[38;2;190;132;255m0[0m[38;2;248;248;242m ≤ y[0m
|
||||
[38;2;248;248;242m z_nonneg : [0m[38;2;190;132;255m0[0m[38;2;248;248;242m ≤ z[0m
|
||||
[38;2;248;248;242m sum_eq : x + y + z = [0m[38;2;190;132;255m1[0m
|
||||
|
||||
[38;2;249;38;114mvariables[0m[38;2;248;248;242m {X}[0m
|
||||
[38;2;117;113;94m/--[0m
|
||||
[38;2;117;113;94mConstruct an `option_wrapper` term from a provided `option X` and the `string`[0m
|
||||
[38;2;117;113;94mthat will override the `has_repr.repr` for `none`.[0m
|
||||
[38;2;117;113;94m-/[0m
|
||||
[38;2;249;38;114mdef[0m[38;2;248;248;242m [0m[38;2;166;226;46moption_wrap[0m[38;2;248;248;242m [0m[38;2;248;248;242m(val : option X) (none_s : string) : option_wrapper X := ⟨val, none_s⟩[0m
|
||||
[38;2;249;38;114m#check[0m[38;2;248;248;242m Pi.ringHom[0m
|
||||
[38;2;249;38;114m#check[0m[38;2;248;248;242m ker_Pi_Quotient_mk[0m
|
||||
[38;2;249;38;114m#eval[0m[38;2;248;248;242m [0m[38;2;190;132;255m1[0m[38;2;248;248;242m + [0m[38;2;190;132;255m1[0m
|
||||
|
||||
[38;2;117;113;94m--[0m[38;2;117;113;94m The size of the "vectors" for a `fin n' → X`, for `has_repr` definitions[0m
|
||||
[38;2;249;38;114mvariables[0m[38;2;248;248;242m {m' n' : ℕ}[0m
|
||||
[38;2;117;113;94m/-- The homomorphism from ``R ⧸ ⨅ i, I i`` to ``Π i, R ⧸ I i`` featured in the Chinese[0m
|
||||
[38;2;117;113;94m Remainder Theorem. -/[0m
|
||||
[38;2;249;38;114mdef[0m[38;2;248;248;242m [0m[38;2;166;226;46mchineseMap[0m[38;2;248;248;242m [0m[38;2;248;248;242m(I : ι → Ideal R) : (R ⧸ ⨅ i, I i) →+* Π i, R ⧸ I i :=[0m
|
||||
[38;2;248;248;242m Ideal.Quotient.lift (⨅ i, I i) (Pi.ringHom [0m[38;2;249;38;114mfun[0m[38;2;248;248;242m i : ι ↦ Ideal.Quotient.mk (I i))[0m
|
||||
[38;2;248;248;242m ([0m[38;2;249;38;114mby[0m[38;2;248;248;242m simp [← RingHom.mem_ker, ker_Pi_Quotient_mk])[0m
|
||||
|
||||
[38;2;117;113;94m/--[0m
|
||||
[38;2;117;113;94mFor a "vector" `X^n'` represented by the type `Π n' : ℕ, fin n' → X`, where[0m
|
||||
[38;2;117;113;94mthe `X` has a `has_repr` instance itself, we can provide a `has_repr` for the "vector".[0m
|
||||
[38;2;117;113;94mThis definition is used for displaying rows of the playfield, when it is defined[0m
|
||||
[38;2;117;113;94mvia a `matrix`, likely through notation.[0m
|
||||
[38;2;117;113;94m-/[0m
|
||||
[38;2;249;38;114mdef[0m[38;2;248;248;242m [0m[38;2;166;226;46mvec_repr[0m[38;2;248;248;242m [0m[38;2;248;248;242m: Π {n' : ℕ}, (fin n' → X) → string :=[0m
|
||||
[38;2;249;38;114mλ[0m[38;2;248;248;242m _ v, string.intercalate [0m[38;2;230;219;116m"[0m[38;2;230;219;116m, [0m[38;2;230;219;116m"[0m[38;2;248;248;242m ((vector.of_fn v).to_list.map repr)[0m
|
||||
[38;2;249;38;114mlemma[0m[38;2;248;248;242m [0m[38;2;166;226;46mchineseMap_mk[0m[38;2;248;248;242m [0m[38;2;248;248;242m(I : ι → Ideal R) (x : R) :[0m
|
||||
[38;2;248;248;242m chineseMap I (Quotient.mk _ x) = [0m[38;2;249;38;114mfun[0m[38;2;248;248;242m i : ι ↦ Ideal.Quotient.mk (I i) x :=[0m
|
||||
[38;2;248;248;242m rfl[0m
|
||||
|
||||
[38;2;249;38;114minstance[0m[38;2;248;248;242m [0m[38;2;166;226;46mvec_repr_instance[0m[38;2;248;248;242m [0m[38;2;248;248;242m: has_repr (fin n' → X) := ⟨vec_repr⟩[0m
|
||||
[38;2;249;38;114mtheorem[0m[38;2;248;248;242m [0m[38;2;166;226;46misCoprime_Inf[0m[38;2;248;248;242m [0m[38;2;248;248;242m{I : Ideal R} {J : ι → Ideal R} {s : Finset ι}[0m
|
||||
[38;2;248;248;242m (hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := [0m[38;2;249;38;114mby[0m
|
||||
[38;2;248;248;242m classical[0m
|
||||
[38;2;248;248;242m simp_rw [isCoprime_iff_add] at *[0m
|
||||
[38;2;248;248;242m induction s using Finset.induction [0m[38;2;249;38;114mwith[0m
|
||||
[38;2;248;248;242m | empty =>[0m
|
||||
[38;2;248;248;242m simp[0m
|
||||
[38;2;248;248;242m | @insert i s _ hs =>[0m
|
||||
[38;2;248;248;242m rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top][0m
|
||||
[38;2;248;248;242m set K := ⨅ j ∈ s, J j[0m
|
||||
[38;2;248;248;242m [0m[38;2;249;38;114mcalc[0m
|
||||
[38;2;248;248;242m [0m[38;2;190;132;255m1[0m[38;2;248;248;242m = I + K := (hs [0m[38;2;249;38;114mfun[0m[38;2;248;248;242m j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm[0m
|
||||
[38;2;248;248;242m _ = I + K * (I + J i) := [0m[38;2;249;38;114mby[0m[38;2;248;248;242m rw [hf i (Finset.mem_insert_self i s), mul_one][0m
|
||||
[38;2;248;248;242m _ = ([0m[38;2;190;132;255m1[0m[38;2;248;248;242m + K) * I + K * J i := [0m[38;2;249;38;114mby[0m[38;2;248;248;242m ring[0m
|
||||
[38;2;248;248;242m _ ≤ I + K ⊓ J i := [0m[38;2;249;38;114mby[0m[38;2;248;248;242m gcongr ; apply mul_le_left ; apply mul_le_inf[0m
|
||||
|
||||
[38;2;117;113;94m/--[0m
|
||||
[38;2;117;113;94mFor a `matrix` `X^(m' × n')` where the `X` has a `has_repr` instance itself,[0m
|
||||
[38;2;117;113;94mwe can provide a `has_repr` for the matrix, using `vec_repr` for each of the rows of the matrix.[0m
|
||||
[38;2;117;113;94mThis definition is used for displaying the playfield, when it is defined[0m
|
||||
[38;2;117;113;94mvia a `matrix`, likely through notation.[0m
|
||||
[38;2;117;113;94m-/[0m
|
||||
[38;2;249;38;114mdef[0m[38;2;248;248;242m [0m[38;2;166;226;46mmatrix_repr[0m[38;2;248;248;242m [0m[38;2;248;248;242m: Π {m' n'}, matrix (fin m') (fin n') X → string :=[0m
|
||||
[38;2;249;38;114mλ[0m[38;2;248;248;242m _ _ M, string.intercalate [0m[38;2;230;219;116m"[0m[38;2;230;219;116m;[0m[38;2;190;132;255m\n[0m[38;2;230;219;116m"[0m[38;2;248;248;242m ((vector.of_fn M).to_list.map repr)[0m
|
||||
|
||||
[38;2;249;38;114minstance[0m[38;2;248;248;242m [0m[38;2;166;226;46mmatrix_repr_instance[0m[38;2;248;248;242m [0m[38;2;248;248;242m:[0m
|
||||
[38;2;248;248;242m has_repr (matrix (fin n') (fin m') X) := ⟨matrix_repr⟩[0m
|
||||
[38;2;249;38;114mclass[0m[38;2;248;248;242m [0m[38;2;166;226;46mRing₃[0m[38;2;248;248;242m [0m[38;2;248;248;242m(R : [0m[3;38;2;102;217;239mType[0m[38;2;248;248;242m) [0m[38;2;249;38;114mextends[0m[38;2;248;248;242m AddGroup₃ R, Monoid₃ R, MulZeroClass R [0m[38;2;249;38;114mwhere[0m
|
||||
[38;2;248;248;242m [0m[38;2;117;113;94m/-- Multiplication is left distributive over addition -/[0m
|
||||
[38;2;248;248;242m left_distrib : ∀ a b c : R, a * (b + c) = a * b + a * c[0m
|
||||
[38;2;248;248;242m [0m[38;2;117;113;94m/-- Multiplication is right distributive over addition -/[0m
|
||||
[38;2;248;248;242m right_distrib : ∀ a b c : R, (a + b) * c = a * c + b * c[0m
|
||||
|
||||
[38;2;249;38;114minstance[0m[38;2;248;248;242m {R : Type} [0m[38;2;248;248;242m[Ring₃ R] : AddCommGroup₃ R :=[0m
|
||||
[38;2;248;248;242m{ Ring₃.toAddGroup₃ [0m[38;2;249;38;114mwith[0m
|
||||
[38;2;248;248;242m add_comm := [0m[38;2;249;38;114mby[0m
|
||||
[38;2;248;248;242m [0m[38;2;248;248;240msorry[0m[38;2;248;248;242m }[0m
|
||||
|
||||
[38;2;249;38;114mend[0m[38;2;248;248;242m repr[0m
|
||||
|
||||
|
111
tests/syntax-tests/source/Lean/test.lean
vendored
111
tests/syntax-tests/source/Lean/test.lean
vendored
@@ -1,67 +1,82 @@
|
||||
import data.matrix.notation
|
||||
import data.vector2
|
||||
import MIL.Common
|
||||
import Mathlib.Topology.Instances.Real.Defs
|
||||
|
||||
/-!
|
||||
open Set Filter Topology
|
||||
|
||||
Helpers that don't currently fit elsewhere...
|
||||
variable {α : Type*}
|
||||
variable (s t : Set ℕ)
|
||||
variable (ssubt : s ⊆ t)
|
||||
variable {α : Type*} (s : Set (Set α))
|
||||
-- Apostrophes are allowed in variable names
|
||||
variable (f'_x x' : ℕ)
|
||||
variable (bangwI' jablu'DI' QaQqu' nay' Ghay'cha' he' : ℕ)
|
||||
|
||||
-/
|
||||
-- In the next example we could use `tauto` in each proof instead of knowing the lemmas
|
||||
example {α : Type*} (s : Set α) : Filter α :=
|
||||
{ sets := { t | s ⊆ t }
|
||||
univ_sets := subset_univ s
|
||||
sets_of_superset := fun hU hUV ↦ Subset.trans hU hUV
|
||||
inter_sets := fun hU hV ↦ subset_inter hU hV }
|
||||
|
||||
lemma split_eq {m n : Type*} (x : m × n) (p p' : m × n) :
|
||||
p = x ∨ p' = x ∨ (x ≠ p ∧ x ≠ p') := by tauto
|
||||
|
||||
-- For `playfield`s, the piece type and/or piece index type.
|
||||
variables (X : Type*)
|
||||
variables [has_repr X]
|
||||
|
||||
namespace chess.utils
|
||||
|
||||
section repr
|
||||
|
||||
/--
|
||||
An auxiliary wrapper for `option X` that allows for overriding the `has_repr` instance
|
||||
for `option`, and rather, output just the value in the `some` and a custom provided
|
||||
`string` for `none`.
|
||||
-/
|
||||
structure option_wrapper :=
|
||||
(val : option X)
|
||||
(none_s : string)
|
||||
@[class] structure One₂ (α : Type) where
|
||||
/-- The element one -/
|
||||
one : α
|
||||
|
||||
instance wrapped_option_repr : has_repr (option_wrapper X) :=
|
||||
⟨λ ⟨val, s⟩, (option.map has_repr.repr val).get_or_else s⟩
|
||||
structure StandardTwoSimplex where
|
||||
x : ℝ
|
||||
y : ℝ
|
||||
z : ℝ
|
||||
x_nonneg : 0 ≤ x
|
||||
y_nonneg : 0 ≤ y
|
||||
z_nonneg : 0 ≤ z
|
||||
sum_eq : x + y + z = 1
|
||||
|
||||
variables {X}
|
||||
/--
|
||||
Construct an `option_wrapper` term from a provided `option X` and the `string`
|
||||
that will override the `has_repr.repr` for `none`.
|
||||
-/
|
||||
def option_wrap (val : option X) (none_s : string) : option_wrapper X := ⟨val, none_s⟩
|
||||
#check Pi.ringHom
|
||||
#check ker_Pi_Quotient_mk
|
||||
#eval 1 + 1
|
||||
|
||||
-- The size of the "vectors" for a `fin n' → X`, for `has_repr` definitions
|
||||
variables {m' n' : ℕ}
|
||||
/-- The homomorphism from ``R ⧸ ⨅ i, I i`` to ``Π i, R ⧸ I i`` featured in the Chinese
|
||||
Remainder Theorem. -/
|
||||
def chineseMap (I : ι → Ideal R) : (R ⧸ ⨅ i, I i) →+* Π i, R ⧸ I i :=
|
||||
Ideal.Quotient.lift (⨅ i, I i) (Pi.ringHom fun i : ι ↦ Ideal.Quotient.mk (I i))
|
||||
(by simp [← RingHom.mem_ker, ker_Pi_Quotient_mk])
|
||||
|
||||
/--
|
||||
For a "vector" `X^n'` represented by the type `Π n' : ℕ, fin n' → X`, where
|
||||
the `X` has a `has_repr` instance itself, we can provide a `has_repr` for the "vector".
|
||||
This definition is used for displaying rows of the playfield, when it is defined
|
||||
via a `matrix`, likely through notation.
|
||||
-/
|
||||
def vec_repr : Π {n' : ℕ}, (fin n' → X) → string :=
|
||||
λ _ v, string.intercalate ", " ((vector.of_fn v).to_list.map repr)
|
||||
lemma chineseMap_mk (I : ι → Ideal R) (x : R) :
|
||||
chineseMap I (Quotient.mk _ x) = fun i : ι ↦ Ideal.Quotient.mk (I i) x :=
|
||||
rfl
|
||||
|
||||
instance vec_repr_instance : has_repr (fin n' → X) := ⟨vec_repr⟩
|
||||
theorem isCoprime_Inf {I : Ideal R} {J : ι → Ideal R} {s : Finset ι}
|
||||
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by
|
||||
classical
|
||||
simp_rw [isCoprime_iff_add] at *
|
||||
induction s using Finset.induction with
|
||||
| empty =>
|
||||
simp
|
||||
| @insert i s _ hs =>
|
||||
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
|
||||
set K := ⨅ j ∈ s, J j
|
||||
calc
|
||||
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
|
||||
_ = I + K * (I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
|
||||
_ = (1 + K) * I + K * J i := by ring
|
||||
_ ≤ I + K ⊓ J i := by gcongr ; apply mul_le_left ; apply mul_le_inf
|
||||
|
||||
/--
|
||||
For a `matrix` `X^(m' × n')` where the `X` has a `has_repr` instance itself,
|
||||
we can provide a `has_repr` for the matrix, using `vec_repr` for each of the rows of the matrix.
|
||||
This definition is used for displaying the playfield, when it is defined
|
||||
via a `matrix`, likely through notation.
|
||||
-/
|
||||
def matrix_repr : Π {m' n'}, matrix (fin m') (fin n') X → string :=
|
||||
λ _ _ M, string.intercalate ";\n" ((vector.of_fn M).to_list.map repr)
|
||||
|
||||
instance matrix_repr_instance :
|
||||
has_repr (matrix (fin n') (fin m') X) := ⟨matrix_repr⟩
|
||||
class Ring₃ (R : Type) extends AddGroup₃ R, Monoid₃ R, MulZeroClass R where
|
||||
/-- Multiplication is left distributive over addition -/
|
||||
left_distrib : ∀ a b c : R, a * (b + c) = a * b + a * c
|
||||
/-- Multiplication is right distributive over addition -/
|
||||
right_distrib : ∀ a b c : R, (a + b) * c = a * c + b * c
|
||||
|
||||
instance {R : Type} [Ring₃ R] : AddCommGroup₃ R :=
|
||||
{ Ring₃.toAddGroup₃ with
|
||||
add_comm := by
|
||||
sorry }
|
||||
|
||||
end repr
|
||||
|
||||
|
Reference in New Issue
Block a user